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ABSTRACT 
 

Objectives: Social scientists employ various statistical techniques to approximate the causal 
association between two interrelated constructs. Although these methodologies have been useful 
for the advancement of knowledge, the limitations associated with preceding statistical 
techniques limit the ability of scholars to approximate causal associations within some 
conditions. As such, the current study provides a new statistical technique designed to 
approximate causal associations independent of observed genetic and environmental 
confounders. 
 
Methods: Genetically adjusted propensity score matching (GAPSM) represents an innovative 
iteration of propensity score matching (PSM) designed to integrate environmental and genetic 
factors into the matching process. By using polygenic risk scores, future scholars can estimate 
genetically adjusted propensity scores (GAPS) through the implementation of two distinct 
statistical processes. To demonstrate the validity of the GAPSM approach, the current study 
employs simulation analyses to compare the point estimates derived from a post-GAPSM model 
to the point estimates derived from a post-PSM model and an MZ difference score model.  
 
Results: The results of the simulation analyses demonstrated that when environmental measures 
that explain a larger portion of the variance in a treatment condition are introduced into the 
GAPSM approach, post-GAPSM models approach the true point estimate more closely than the 
point estimates derived from a post-PSM model and an MZ difference score model.  
 
Conclusions: Overall, the findings demonstrate that the GAPSM approach can be useful when 
assessing the causal effects of treatment conditions on subsequent phenotypes by adjusting for 
observed environmental and genetic factors. Within the social sciences, this method could 
provide substantive advancements in our understanding of causal effects. Specifically, GAPSM 
represents another tool social scientists can use to conduct rigorous genetically sensitive 
examinations of the etiological influence of environmental factors on human behavior. 



 iii 



 iv 

Dedication Page 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my Mom, Dad, and Wife  
You gave me everything and I gave you a book. 

 
 
 
 



 v 

ACKNOWLEDGEMENTS 
 

I would like to begin by thanking the friends that stood by me throughout my graduate 
studies. I would like to thank my friends from Brooklyn, from my undergraduate studies at the 
University of Cincinnati, and the friends that I have made during my graduate studies at the 
University of Cincinnati. 
 I would also like to thank the University of Cincinnati Corrections Institute (UCCI), with 
a special thank you to Myrinda Schweitzer, Carrie Sullivan, and Jamie Newsome. The 
opportunities you afforded to me and the guidance you have given me was essential to my 
development as a scholar. I will happily always be a part of the UCCI family.  

Furthermore, I would like to acknowledge all of the professors who have had an impact 
on me. Of which, I would like to directly thank Edward Latessa, Chris Sullivan, and John 
Wooldredge for their hard work and devotion to my academic career.  
 JC Barnes, Joshua Cochran, and George Richardson. Thank you for agreeing to be on my 
dissertation committee and challenging me every step of the way. I know that a methodological 
dissertation isn’t the most ideal read, but the importance of the methodology outweighs the 
convoluted discussions. Additionally, without you my dissertation wouldn’t have succeeded at 
demonstrating the validity and usefulness of the GAPSM methodology. Thank you for all of 
your help on my dissertation and in my career. Don’t expect for this to be the last time you hear 
from me.  

Joe, Kate, and Clementine, and Rob. You have played an indescribable role in my life. 
Joe and Rob, you were always role models to me and helped me develop into the person I am 
today. Additionally, Kate you have been an amazing sister-in-law who has done nothing but 
support me. Thank you for everything that you have done and everything you will do in the 
future. Additionally, I would like to thank everyone in my family who has been there for me 
when I needed it the most. 
 Mom, I could not have done this without your support. My doctoral degree signifies as 
much my hard work as yours. Thank you for being there every time I needed you, thank you for 
trusting in me even when I wasn’t the best child, and thank you for supporting me even when I 
told you that I was going to school for another four years. I could not have asked for a better 
mother, friend, and role model. As you have done, I will always be there for you if you ever need 
anything. Thank you for always loving me. 
 Dad, thank you for everything you have done for me throughout my education and my 
life. You have always encouraged and supported my dreams. No matter what idea, goal, or 
dream I brought to you, I always knew that I would be reassured that I could achieve whatever 
goal I put my mind to. Lynn, I would also like to thank for your encouragement and enthusiasm 
throughout my life. Thank you for always loving me. 
 Six years ago you agreed to be my undergraduate research advisor, stupidly might I add, 
and since then you have not been able to get rid of me. Joseph Nedelec, while it wasn’t always 
easy, it has been a remarkable six years, in which we have accomplished so much. Although I 
don’t believe this will be the pinnacle of our accomplishments, this dissertation and my graduate 
studies as a whole could not have been accomplished without your guidance. You have been an 
amazing mentor and friend, who has encouraged me to develop my own research interests, create 
manuscripts outside the realm of your own expertise, and integrate biological and social 
mechanisms to better explain antisocial behavior in unique environments. This dissertation is a 
product of my hard work and your expertise. Thank you so much. I would also like to thank 
Amanda, Anna, and Robert Nedelec for allowing me to take time away from their husband/dad 
so I can be a successful student and scholar.  



 vi 

 Last but not least I would like to thank my wonderful wife, Danielle Silver. Although I 
might have a Ph.D., I will always be the second smartest person in our household. You are one of 
the most amazing people that I have ever met and I could not have achieved this without your 
love and support. Additionally, I am happy that you have had faith and trusted me since day one 
of my doctoral studies. I know that it has been difficult at times, but we have always been there 
for each other and I swear there is a light at the end of the tunnel. You have supported me 
throughout this process and similarly I will go to the end of the world to help you achieve your 
dreams. This Ph.D., however, should be awarded to both of us for our hard work and devotion. If 
only you registered for classes! I love you and I am happy that I can share my life and Ph.D. with 
you.  
 
--------------------------------------------------------------------------------------------------------------------- 
 
This research uses data from Add Health, a program project directed by Kathleen Mullan Harris 
and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the 
University of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice 
Kennedy Shriver National Institute of Child Health and Human Development, with cooperative 
funding from 23 other federal agencies and foundations. Special acknowledgment is due Ronald 
R. Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to 
obtain the Add Health data files is available on the Add Health website 
(http://www.cpc.unc.edu/addhealth). No direct support was received from grant P01-HD31921 
for this analysis. 
 



 vii 

TABLE OF CONTENTS 
 

LIST OF TABLES ......................................................................................................................... xi 

LIST OF FIGURES ..................................................................................................................... xiii 

LIST OF EQUATIONS ............................................................................................................... xiv 

 
 
CHAPTER 1: STATEMENT OF THE PROBLEM ....................................................................... 1 

1.1. Current Focus ....................................................................................................................... 3 

1.2. Outline .................................................................................................................................. 4 

CHAPTER 2: CAUSALITY AND SELF-SELECTION ............................................................... 9 

2.1. Counterfactual Framework: A Theoretical Proposition ..................................................... 13 

2.2. Self-Selection Bias ............................................................................................................. 17 

2.2. Self-Selection in Criminology ........................................................................................... 19 

CHAPTER 3: STRATEGIES IDENTIFYING AND ADJUSTING FOR SELF-SELECTION .. 23 

3.1. Standard Social Science Methodologies ............................................................................ 23 

3.1.1. Ordinary least squares and binary logistic regression (statistical control method) .... 24 

3.1.2. Propensity score matching and generalized propensity score matching ..................... 27 

3.2. Quantitative Genetic Methodologies: Conceptual Background ........................................ 35 

3.3. Quantitative Genetic Methodologies: Adjusting for Self-Selection .................................. 37 

3.3.1. ACE decomposition model ......................................................................................... 38 

3.3.2. MZ difference model .................................................................................................. 45 

3.3.3. Polygenic risk scores ................................................................................................... 50 

3.4. Genetically Adjusted Propensity Scores (GAPS) .............................................................. 56 

3.4.1. Estimating genetically adjusted propensity scores (GAPS) ........................................ 58 



 viii 

3.4.2. Assumptions of genetically adjusted propensity scores (GAPS) ................................ 63 

3.4.3. Genetically adjusted propensity score matching (GAPSM) ....................................... 64 

CHAPTER 4: THE CURRENT STUDY ..................................................................................... 67 

CHAPTER 5: METHODS ............................................................................................................ 69 

5.1. National Longitudinal Study of Adolescent to Adult Health ............................................. 69 

5.1.1. The added value of the Add Health when comparing twin difference scores to PSM 71 

5.1.2. The external validity of the twin subsample ............................................................... 72 

5.2. Studies 1-3: Examining Self-Selection with Preexisting Methodologies .......................... 72 

5.2.1. Analytical samples ...................................................................................................... 74 

5.2.2. Measures ..................................................................................................................... 76 

5.2.3. Analytical strategies .................................................................................................... 80 

5.3. Study 4: GAPSM Proof of Concept ................................................................................... 83 

5.3.1. Simulating data ........................................................................................................... 86 

5.3.2. Specification of the treatment conditions (40 treatment conditions) .......................... 89 

5.3.3. Specification of the outcome of interest ..................................................................... 91 

5.3.4. Analytical strategy ...................................................................................................... 92 

CHAPTER 6: RESULTS .............................................................................................................. 95 

6.1. Study 1: Results: Exploring the Existence of Social and Genetic Self-Selection .............. 95 

6.1.1 Descriptive statistics full sample ................................................................................. 95 

6.1.2. Descriptive statistics MZ/DZ subsamples .................................................................. 99 

6.1.3. Baseline multivariate regression models (DV: Antisocial Behavior) ....................... 107 

6.1.4. Exploration of social self-selection (DV: Treatment Conditions) ............................ 113 

6.1.5. Exploration of genetic self-selection (DV: Treatment Conditions) .......................... 115 

6.2. Study 2: Adjusting for Social Self-Selection with Propensity Score Matching .............. 119 



 ix 

6.2.1. Post-matching balancing statistics for educational attainment ................................. 119 

6.2.2. Post-matching balancing statistics for intelligence ................................................... 122 

6.2.3. Post-matching bivariate associations between the dependent variables and the 

treatment conditions. ........................................................................................................... 127 

6.3 Study 3: Adjusting for Genetic Self-Selection with MZ Difference Scores ..................... 130 

6.3.1. Descriptive statistics and cross-twin correlations: MZ twin subsample. .................. 130 

6.3.2. Descriptive statistics for MZ difference scores. ....................................................... 134 

6.3.3. Multivariate models of the MZ difference scores for the dependent variables on the 

MZ difference scores for the treatment variables ............................................................... 136 

6.4 Summary of Findings: Studies 1, 2, and 3 ........................................................................ 142 

6.4.1. Educational attainment and antisocial behavior ....................................................... 142 

6.4.2. Intelligence and antisocial behavior .......................................................................... 145 

6.5. Study 4: GAPSM Proof of Concept ................................................................................. 149 

6.5.1. First round of thirteen specifications of the treatment condition .............................. 151 

6.5.2. Second round of thirteen specifications of the treatment condition ......................... 155 

6.5.3. Third round of thirteen specifications of the treatment condition ............................ 159 

CHAPTER 7: DISCUSSION ...................................................................................................... 163 

7.1. Findings ............................................................................................................................ 163 

7.2. Implications for Social Science Research ........................................................................ 165 

7.3. Implications for Criminology and Criminal Justice ......................................................... 167 

7.3.1. GAPSM and testing criminological theories ............................................................ 168 

7.3.2. GAPSM and testing criminal justice policies ........................................................... 169 

7.3.3. GAPSM and testing treatment effects ....................................................................... 170 

7.4. Limitations ....................................................................................................................... 172 



 x 

7.4.1. Simulation analyses .................................................................................................. 172 

7.4.2. Mathematical proof vs. empirical assessment .......................................................... 173 

7.4.3. Mathematical proof vs. practical applications .......................................................... 173 

7.4.4. Data requirements ..................................................................................................... 175 

7.5. Conclusion ....................................................................................................................... 175 

REFERENCES ........................................................................................................................... 177 

APPENDICIES ........................................................................................................................... 196 

Appendix A: Quantitative Genetic Methodologies A Conceptual Background ..................... 197 

A.1. Evolution: Beyond basic knowledge ........................................................................... 197 

A.2. Genetic relatedness: Two branches of the same tree .................................................. 205 

A.3. Genes: Mechanisms of heredity .................................................................................. 209 

Appendix B: Coding Schemes for Measures of Interest ......................................................... 214 

Appendix C: Assessing the Mean Differences Between Twin Subsamples and Full Sample 220 

Appendix D: 40 Specifications of the Treatment Condition. ................................................. 223 

Appendix E: Supplemental Results for Study 2 ..................................................................... 224 

Appendix F: Complete Results of the Simulation Analysis ................................................... 236 

Appendix G: Interpretation of GPS Balancing Results .......................................................... 248 

 

 



 xi 

LIST OF TABLES 
 

Table 6.1 ……………………………………………………………………………………….96 

Table 6.2 ……………………………………………………………………………………….98 

Table 6.3 ……………………………………………………………………………………….100 

Table 6.4 ……………………………………………………………………………………….102 

Table 6.5 ……………………………………………………………………………………….104 

Table 6.6 ……………………………………………………………………………………….106 

Table 6.7 ……………………………………………………………………………………….108 

Table 6.8 ……………………………………………………………………………………….110 

Table 6.9 ……………………………………………………………………………………….112 

Table 6.10 ……………………………………………………………………………………...114 

Table 6.11 ……………………………………………………………………………………...120 

Table 6.12 ……………………………………………………………………………………...122 

Table 6.13 ……………………………………………………………………………………...124 

Table 6.14 ……………………………………………………………………………………...129 

Table 6.15 ……………………………………………………………………………………...129 

Table 6.16 ……………………………………………………………………………………...129 

Table 6.17 ……………………………………………………………………………………...131 

Table 6.18 ……………………………………………………………………………………...133 

Table 6.19 ……………………………………………………………………………………...135 

Table 6.20 ……………………………………………………………………………………...137 

Table 6.21 ……………………………………………………………………………………...139 

Table 6.22 ……………………………………………………………………………………...141 

Table 6.23 ……………………………………………………………………………………...144 



 xii 

Table 6.24 ……………………………………………………………………………………...146 

Table 6.25 ……………………………………………………………………………………...148 

 



 xiii 

LIST OF FIGURES 
 
Figure 2.1 ………………………………………………………………………………………9 

Figure 2.2 ………………………………………………………………………………………10 

Figure 2.3 ………………………………………………………………………………………10 

Figure 2.4 ………………………………………………………………………………………11 

Figure 2.5 ………………………………………………………………………………………11 

Figure 2.6 ………………………………………………………………………………………12 

Figure 2.7 ………………………………………………………………………………………13 

Figure 2.8 ………………………………………………………………………………………14 

Figure 2.9 ………………………………………………………………………………………16 

Figure 2.10……………………………………………………………………………………...18 

Figure 3.1 ………………………………………………………………………………………42 

Figure 6.1 ………………………………………………………………………………………116 

Figure 6.2 ………………………………………………………………………………………118 

Figure 6.3 ………………………………………………………………………………………154 

Figure 6.4 ………………………………………………………………………………………158 

Figure 6.5 ………………………………………………………………………………………162 

 



 xiv 

LIST OF EQUATIONS 
 
Formula 3.1 …………………………………………………………………………………25 

Formula 3.2 …………………………………………………………………………………25 

Formula 3.3 …………………………………………………………………………………26 

Formula 3.4 …………………………………………………………………………………26 

Formula 3.5 …………………………………………………………………………………29 

Formula 3.6 …………………………………………………………………………………29 

Formula 3.7 …………………………………………………………………………………30 

Formula 3.8 …………………………………………………………………………………31 

Formula 3.9 …………………………………………………………………………………31 

Formula 3.10 ………………………………………………………………………………..31 

Formula 3.11 ………………………………………………………………………………..32 

Formula 3.12 ………………………………………………………………………………..32 

Formula 3.13 ………………………………………………………………………………..33 

Formula 3.14 ………………………………………………………………………………..39 

Formula 3.15 ………………………………………………………………………………..40 

Formula 3.16 ………………………………………………………………………………..40 

Formula 3.17 ………………………………………………………………………………..40 

Formula 3.18 ………………………………………………………………………………..40 

Formula 3.19 ………………………………………………………………………………..41 

Formula 3.20 ………………………………………………………………………………..43 

Formula 3.21 ………………………………………………………………………………..43 

Formula 3.22 ………………………………………………………………………………..44 

Formula 3.23 ………………………………………………………………………………..44 



 xv 

Formula 3.24 ………………………………………………………………………………..44 

Formula 3.25 ………………………………………………………………………………..47 

Formula 3.26 ………………………………………………………………………………..47 

Formula 3.27 ………………………………………………………………………………..47 

Formula 3.28 ………………………………………………………………………………..48 

Formula 3.29 ………………………………………………………………………………..48 

Formula 3.30 ………………………………………………………………………………..52 

Formula 3.31 ………………………………………………………………………………..53 

Formula 3.32 ………………………………………………………………………………..53 

Formula 3.33 ………………………………………………………………………………..54 

Formula 3.34 ………………………………………………………………………………..54 

Formula 3.35 ………………………………………………………………………………..58 

Formula 3.36 ………………………………………………………………………………..59 

Formula 3.37 ………………………………………………………………………………..59 

Formula 3.38 ………………………………………………………………………………..60 

Formula 3.39 ………………………………………………………………………………..60 

Formula 3.40 ………………………………………………………………………………..61 

Formula 3.41 ………………………………………………………………………………..61 

Formula 3.42 ………………………………………………………………………………..62 

Formula 3.43 ………………………………………………………………………………..62 
 



 1 

 
CHAPTER 1: STATEMENT OF THE PROBLEM 

 

 Arguably, contemporary criminology is no closer to determining the causal effects 

between variables than criminological scholarship in the early 20th century. Although theories 

and statistical analyses have become more complex, criminologists generally choose more 

simplistic analyses that often demonstrate little more than the association between two variables 

(e.g., Gray et al., 2015; Intravia et al., 2017; Makarios, Cullen, and Piquero, 2017). Furthermore, 

the abundance of scholarship employing simple statistical techniques has manifested itself in 

over-interpretations of statistical associations (e.g., Restivo and Lanier, 2015; Watts, 2018).1 For 

example, the simplistic statistical techniques (e.g., statistical control cross-sectional models) 

employed by Gottfredson and Hirschi (1990) generated the broad conclusion that “high self-

control effectively reduces the possibility of crime” (pg. 89) and “the major cause of low self-

control thus appears to be ineffective child-rearing” (pg. 97). Besides interpreting statistical 

associations causally, Gottfredson and Hirschi (1990) effectively ignored all of the potential 

biological and environmental predispositions associated with childrearing, self-control, and 

antisocial behavior (Harris, 2011).  

Furthermore, these over-interpretations of statistical associations have generated the 

inability to disprove theoretical perspectives. For instance, in their analysis of the contextual 

effects and mitigating factors of labeling theory, Restivo and Lanier (2015) estimated an OLS 

regression analysis where future criminal behavior was regressed on arrest and attitudes of self, 

which resulted in the conclusion that “This finding is consistent with the current labeling 

literature and continues to provide confirmation of the idea that formal labeling will result in 

                                                
1 In the current context, over-interpretation refers to the process in which scholars portray their findings as causal 
when causality cannot be determined. 
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increases of future delinquent behavior” (pg. 132). Though there is a statistical association 

between arrest and future criminal behavior, these results do not confirm the idea that formal 

labeling will increase future criminal behavior. Specifically, by analyzing non-experimental data 

the scholars allowed for substantive biases to remove their ability to confirm or identify a causal 

association between two or more concepts. Moreover, the theoretical model of labeling theory is 

highly confounded by individual predispositions preceding criminal justice interventions, which 

substantially increase the likelihood of self-selection influencing the observed association and 

restricts the potential causal pathway between criminal labels and future criminal activity 

(Farrington, 2005; Piquero et al., 2007; Smith and Paternoster, 1990; Nedelec and Silver, 2018).  

As a substantial source of bias in such analyses, self-selection refers to the conscious or 

unconscious process in which individuals’ predispositions influence their probability of selecting 

into an environment or situation. Due to the inability to implement true experimental designs that 

allow scholars to examine causality, self-selection has had a substantive influence on the 

accumulation of knowledge within the field of criminology. Currently, various advanced 

statistical techniques are used to address this limitation through the approximation of a 

counterfactual condition. The approximation of a counterfactual condition allows scholars to 

approach causality by emulating the processes common within quasi-experimental designs. 

Remarkably, without these advanced statistical techniques scholars cannot interpret causal 

associations between concepts, which often influences the observed over-interpretation of results 

within criminology.  

In an effort to address this issue beyond contemporary methodologies, the current study 

creates a statistical methodology genetically adjusted propensity score matching (GAPSM) 

applicable to the difficulties facing contemporary criminological research. To be specific, 

whereas statistical associations provide some information on the relationship between two or 
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more variables, advances statistical techniques can generally adjust for the biases associated with 

non-experimental designs. GAPSM is a method developed to adjust for some biases biological 

and social self-selection2 associated with non-experimental designs.  

1.1. Current Focus  

The current study focuses on two mechanisms influencing antisocial behavior that are 

theoretically and empirically supported by an abundance of scholarship: intelligence and 

educational attainment (e.g., Devenish, Hooley, and Mellor, 2017; Herrnstein and Murray, 1994; 

Hirschi and Hindelang, 1977; Gonzalez et al., 2016; Hagan and Parker, 1999; Mears and 

Cochran, 2013; Merton, 1968; Nye, Short, and Olson, 1958; Schwartz and Beaver, 2018; 

Sutherland and Cressey, 1970). Fundamentally, the theoretical assertions are generally well 

formulated and empirical examinations provide evidence of a robust statistical association 

between intelligence and antisocial behavior, and educational attainment and antisocial behavior 

(e.g., Akers, 2011; Backman, 2017; Demmler et al., 2017; Elliot, and Voss, 1974; Larzelere and 

Patterson, 1990; Piotrowska et al., 2015; Thornberry and Farnworth, 1982; Moffitt, 1993).Thus, 

two fundamental research questions are addressed in the current study: (1) What is the causal 

effect of intelligence on future antisocial behavior?; and, (2) what is the causal effect of 

educational attainment on future antisocial behavior? These questions are addressed by 

estimating the relationship between each variable (intelligence and educational attainment) and 

antisocial behavior using three different statistical techniques. Succeeding the examination of 

these questions with preexisting methodologies, genetically adjusted propensity score matching 

(GAPSM) is proposed as an innovative statistical technique to examine causality while holding 

both observed genetic and observed environmental factors constant at varying levels of exposure 

                                                
2 In the current context, biological self-selection refers to the process in which genetic and neurological processes 
predispose individuals to a higher probability of experiencing a phenotype or environmental condition. While social 
self-selection refers to the process in which environmental and societal processes predispose individuals to a higher 
probability of experiencing a phenotype or environmental condition. 
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to the treatment condition.3 The GAPSM proposal is supplemented by a simulation analysis to 

demonstrate when the GAPSM approach is superior to or inferior to the preexisting 

methodologies used in contemporary criminology. Section 1.2. provides an outline for the 

current study. 

1.2. Outline  

The advancements in knowledge provided by these methodologies permit scholars to 

draw conclusions beyond the majority of contemporary scholarship. One collection of statistical 

methodologies allows for the more direct approximation of causal effects between a treatment 

condition and an outcome of interest by establishing an approximate counterfactual condition. 

Chapter 2 will demonstrate that only true experimental designs can establish a counterfactual 

condition where all unobserved variables are held constant across varying levels of exposure to a 

treatment condition. By holding all unobserved variables constant, scholars can estimate the true 

causal effects underlying the association between a treatment condition and an outcome of 

interest. As a result of a general inability to implement true experiments, criminologists are 

commonly hindered by the potential effects of self-selection bias when estimating causal 

associations (Heckman, 1990a; Guo and Fraser, 2015). When considering a counterfactual 

condition, self-selection refers to the process in which predispositions increase or decrease your 

probability of exposure to the treatment condition. In an effort to approximate the counterfactual 

condition established by a true experimental design, scholars have generated various statistical 

techniques to adjust for the effects of self-selection and other potential sources of bias. While 

various sources of bias exist, the current study will focus on self-selection.  

                                                
3 Throughout the current dissertation, the term treatment condition refers to any variable influencing phenotypic 
differences (e.g., intelligence, educational attainment, and peer delinquency). Furthermore, any concept that is 
hypothesized to be causally associated with an outcome could be considered as a treatment condition. 
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 Chapter 3 will explain five statistical methodologies commonly used to identify and 

adjust for the effects of self-selection into a treatment condition. These methodologies include 

statistical control models, propensity score matching, ACE decomposition models, MZ 

difference score models, and polygenic risk score models. Statistical control models, such as 

ordinary least squares (OLS) or binary logistic regression (BLR), are a class of statistical models 

that employ standard social science methodologies (SSSMs) to adjust for the potential effects of 

self-selection. Although these models are widely employed in the field of criminology, they 

generally provide inadequate approximation of the causal association between two variables. 

Propensity score matching (PSM) enhances upon statistical control models by holding all 

observed environmental conditions constant at varying levels of the treatment condition, but it is 

still another example of an SSSM. In contemporary criminology the use of statistical control 

models and PSM often corresponds with the assumption that biological factors do not predispose 

individuals to self-select into a treatment condition (Plomin et al., 2013).  

Contrasting with this assumption are the various quantitative genetic methodologies used 

to approximate a counterfactual condition. ACE decomposition models are used primarily to 

identify the potential genetic and unobserved environmental factors influencing self-selection. 

These models decompose phenotypic variance in a treatment condition into genetic (h2), shared 

(c2), and non shared environmental factors (e2). Divergent from ACE decomposition models, MZ 

difference score models adjust for the unobserved genetic factors increasing or decreasing the 

probability of exposure to the treatment condition.4 In contemporary scholarship, MZ difference 

score models are perceived as the gold standard for establishing genetically-sensitive 

counterfactual conditions (Plomin et al., 2013; Vitaro et al., 2009). Although perceived as the 

                                                
4 It should be noted that scholars using these techniques assume that the model adjusts for shared non-genetic factors 
(e.g., race, age, sex; Plomin et al., 2013). Generally, beyond basic demographics (e.g., race, age, sex) scholars have 
rarely assessed how well MZ difference score models adjust for some environmental factors (i.e., the shared 
environments). For a more detailed discussion of this issue please see Plomin et al., 2013.   
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gold standard, MZ difference score models suffer limitations regarding statistical power and 

potential limitations in terms of generalizability (Plomin et al., 2013; Vitaro et al., 2009). In an 

effort to address these limitations, scholars have developed polygenic risk score models. 

Polygenic risk score models are analytical strategies that statistically control for the influence of 

observed genetic factors on the association between a treatment condition and an outcome of 

interest. When used as a statistical control, polygenic risk scores suffer the same limitations 

associated with the majority of statistical control models (i.e., they provide inadequate 

approximations of the causal association between two variables). Specifically, without satisfying 

the assumptions associated with the statistical control models, the introduction of a polygenic 

risk score cannot provide an approximation of the true counterfactual condition. 

The final section of Chapter 3, proposes a new methodological strategy to approximate 

the counterfactual condition that would be established by a true experiment. This technique 

combines polygenic risk scores with propensity scores to create genetically adjusted propensity 

scores (GAPS). As designed, GAPS capture the variance in the treatment condition predicted by 

both the polygenic risk score and the propensity score. Consistent with propensity scores, 

participants should be matched using GAPS to hold the observed genetic and observed 

environmental factors constant across varying levels of exposure to the treatment condition. This 

technique is labeled as genetically adjusted propensity score matching (GAPSM). As outlined, 

GAPSM should provide a superior counterfactual condition to the other techniques described 

because participants are matched using estimates produced from predicting exposure to a 

treatment condition with both observed genetic and observed environmental factors. 

As reviewed in Chapter 4, the current study demonstrates the validity of the GAPSM 

technique by addressing two research questions: First, what is the causal effect of intelligence on 

antisocial behavior; And second, what is the causal effect of educational attainment on antisocial 
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behavior? These research questions can be assessed using the four statistical techniques 

described in Chapter 3. Furthermore, the two research questions were developed from 

contemporary theoretical and empirical literature in criminology suggesting that both intelligence 

and educational attainment are causally associated with antisocial behavior (e.g., Akers, 2011; 

Backman, 2017; Demmler et al., 2017; Gonzalez et al., 2016; Hagan and Parker, 1999; Merton, 

1968).  

The current study is demarcated into four distinct studies. First, linear regression models 

and ACE decomposition models will be employed to empirically examine the potential factors 

influencing self-selection into intelligence or educational attainment (i.e., the TC). Furthermore, 

the first study will estimate the baseline effects of intelligence and educational attainment on 

future antisocial behavior. Second, propensity score matching (PSM) will be used to adjust for 

social self-selection during the estimation of the causal association between intelligence and 

antisocial behavior, and the causal association between educational attainment and antisocial 

behavior.5 More specifically, all observed environmental factors will be held constant at varying 

levels of intelligence and educational attainment. Third, MZ difference score models will be used 

to adjust for the effects of unobserved genetic factors and shared environmental factors that may 

influence exposure to varying levels of intelligence and educational attainment. Fourth, a 

simulation analysis will be conducted, where post-GAPSM estimates are compared to post-MZ 

difference estimates and unconfounded post-PSM estimates to evaluate the relative proximity to 

a true point estimate (1.00). The results of which should demonstrate the conditions in which the 

GAPSM technique approaches the true point estimate closer than the preexisting methodologies. 

 Chapter 5 and Chapter 6 provide an overview of the data, sample, methods, and results 

produced from studies 1,2,3, and 4. Studies 1, 2, and 3 employ data collected during the National 

                                                
5 Without the introduction of a genetically informed covariate (e.g., polygenic score), PSM cannot adjust for genetic 
self-selection. 
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Longitudinal Study of Adolescent to Adult Health (Add Health). Studies 1, 2, and 3 will 

primarily focus on Wave I, Wave III, and Wave IV to establish temporal ordering between the 

measures. The methods and results sections will be demarcated into four studies (following the 

template from Chapter 4). Chapter 7 will discuss the theoretical and empirical implications 

associated with the findings. Furthermore, Chapter 7 will discuss the empirical validity of the 

GAPS and GAPSM technique, the applicability of GAPSM to examinations of contemporary 

criminological perspectives, and the limitations associated with the current study and the 

GAPSM technique.  
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CHAPTER 2: CAUSALITY AND SELF-SELECTION 

 The complexity of causality is fundamentally difficult to comprehend. Encompassed in 

the complexity is the inability to agree upon a stringent definition of causality. Generally, 

scholars define causality as the necessary, sufficient, and noncircular condition, where an 

exogenous variable generates the presence of an endogenous variable (Holland and Rubin, 1988; 

Lewis, 1973; Spirtes, Glymour, and Scheines, 2000). To state differently, the endogenous 

variable is only present when the exogenous variable occurs first (Lewis, 1973). The definition 

of a causal condition can be demonstrated through four figures.  

 

 

 

 

Figure 2.1 
A Demonstration of a Causal Condition. 

 Figure 2.1 displays the common theoretical perception of causality. In this condition, X 

causes the existence of Y.6 Note that “T1” and “T2” reference the time that X and Y were 

observed. This simplification is difficult to determine because of the three conditions associated 

with theoretically establishing causality (i.e., necessary, sufficient, and noncircular association; 

Lewis, 1973).7 First, necessity refers to the idea that variance in Y cannot be observed without 

the existence of variance in X (Kun and Weiner, 1973). Note that this statement assumes that 

multiple Xs do not cause Y.  

 

                                                
6 Throughout the current dissertation X refers to exogenous variables and Y refers to endogenous variables. 
7 The theoretical establishment of causality is divergent from the empirical establishment of causality (i.e., statistical 
association, temporal ordering, non-spurious association). 

T1   T2 

X      ®             Y 
 
 

Observation 1 
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Figure 2.2 
A Demonstration of a Condition Failing to Achieve Necessary Causal Association. 

 Figure 2.2 represents the failure to achieve necessity. In this condition, we observe 

variance in Y during two distinct observations (i.e., Observation 1 and Observation 2). As 

displayed above, Observation 1 demonstrates a “causal” association between X and Y. 

Nevertheless, Observation 2 determines that Y can occur independent of X. The independent 

occurrence of Y, or the presence of Y without X, demonstrates a failure to achieve necessity (Kun 

and Weiner, 1973; Spirtes et al., 2000).  

 

 

 

 

 
 
 

Figure 2.3 
A Demonstration of a Condition Failing to Achieve Sufficient Causal Association. 

 Figure 2.3 displays a condition where X is not a sufficient cause of Y. While Observation 

1 demonstrates a potentially causal association between X and Y, Observation 2 demonstrates a 

potentially causal association between Z and Y, and Observation 3 demonstrates that Y can be 

observed independent of both X and Z. In all three observations, Y can be observed as the product 

of a preceding variable, but X is not a sufficient cause of Y given the similar outcome when Z is 

introduced or when no independent variable is introduced (Lewis, 1973; Suppes, 1970). This is a 

T1   T2 

X      ®             Y 
 
   Y 

Observation 1 
 
Observation 2 

T1   T2 

X      ®             Y 
 
Z      ®             Y 
 

     ®             Y 

Observation 1 
 
Observation 2 
 
Observation 3 
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function of the inability to determine if variance in X or if variance in Z is causing the observed 

variance in Y. 

 

 

 

 

 

Figure 2.4 
A Demonstration of a Circular Condition. 

 Finally, as demonstrated by Figure 2.4, X is not a sufficient cause of Y because the 

association between the two variables is circular. A circular association refers to the condition in 

Observation 2, where X causes Y, but Y also causes X. In a circular condition, X cannot be a 

cause of Y because Y can precede X in some observations. Although the definition of causality 

provides a theoretical framework for identifying causal mechanisms, empirically demonstrating a 

causal association between two variables requires scholars to satisfy three criteria of causality: X 

and Y must have a logical theoretical and empirical association, X must precede any observation 

of Y, and X and Y must possess a non-spurious association (Shadish et al., 2002; Suppes, 1970; 

Vigen, 2015). Again, these assumptions can be best demonstrated through a series of figures.  

 

 

 

 
 

Figure 2.5A 
Demonstration of a Theoretical and Empirical Association. 

T1   T2   T3 

X      ®             Y 
 
X      ®             Y      ®             X 
 

Observation 1 
 
Observation 2 

T1   T2 

        r* 
X      ®             Y 
 
 

 
 
Observation 1 
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 Figure 2.5 – which is almost identical to Figure 1 – represents an empirical association 

between two variables: X and Y. As indicated by the r* (the common symbol for a statistically 

significant correlation coefficient) Observation 1 results in evidence suggesting an empirical 

association between two variables. Note that unlike Figure 1, we are examining the association 

between X and Y in an empirical, rather than theoretical, framework. Although an empirical 

association is observed in Figure 5, this association could remain illogical.8  

 

 

 

 

Figure 2.6 
A Demonstration of Temporal Order. 

 Figure 2.6 demonstrates a condition where the empirical association between X and Y 

does not satisfy the temporal ordering criterion. Let us assume that the association between X and 

Y is theoretically supported. As indicated by r*, an empirical association between X and Y was 

also observed. While the association between X and Y is both theoretically and empirically 

supported, the observation of X and Y during the same time period (T1) typically generates an 

inability to understand the direction of causality (Miller, 1999; Shadish et al., 2002). Consistent 

with cross-sectional examinations, we are unable to determine if X caused Y or if Y caused X 

(Morgan and Winship, 2015).  

 

 

                                                
8 For example, as demonstrated by Vigen (2015), average per-capita cheese consumption is highly correlated (r = 

.94) with the number of people who died becoming tangled in their own bed sheets. Although an empirical 
association was observed (r = .94), it is theoretically illogical to suggest that cheese consumption causes individuals 
to become tangled and die in their bed sheets (Vigen, 2015). 

T1   T1 

        r* 
X      ®             Y 
 
 

 
 
Observation 1 
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Figure 2.7 

A Demonstration of a Spurious Association. 

 Figure 2.7 demonstrates a spurious association. First, let us assume that the association 

between X and Y satisfy the other two criteria associated with empirically demonstrating 

causality. The third criterion of causality requires the demonstration of a non-spurious 

association between the X and Y (Shadish et al., 2002). A non-spurious association is 

conceptualized as a relationship that is not influenced by any additional variables (Singleton and 

Straits, 2010). The letter “Z” generally represents the hypothetical confounding variable. In 

Figure 7, we observe an empirical association between X and Y (represented by r*) but this 

association appears to be spurious because of an unobserved variable (Z). Generally, the third 

criterion of causality (a non-spurious association) is the most difficult to satisfy because a 

potentially infinite number of unobserved variables could render any observed association 

spurious (Singleton and Straits, 2010). In a theoretical sense, the only way to satisfy the third 

criterion of causality is through an experimental design which relies on the counterfactual 

framework to theoretically exclude the influence of any unobserved variables (Morgan and 

Winship, 2015).  

2.1. Counterfactual Framework: A Theoretical Proposition  

T1   T2   T3 

              r* 
Z      ®             X            ®              Y  
 
   ¯  r* 
 
Z      ®             Y      ®             X 
 

Observation 1 
 
 
 
Observation 2 
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 Simply put, the counterfactual framework is the parenthetical what if statement.9 In a 

research sense, the counterfactual refers primarily to “what would we observe if X had never 

occurred?” (Morgan and Winship, 2015; Roese, 1997). This statement can theoretically dissolve 

into a series of hypothetical situations where X (hereafter referred to as a treatment condition)10 

had never occurred (Morgan and Winship, 2015). For illustration, let us conduct a medical study, 

where 50 individuals with a treatable illness are exposed to a treatment condition. We observed 

that the illness disappeared succeeding exposure to the treatment condition. Though this 

observation appears to causally link the treatment condition to the disappearance of the illness, 

we have failed to demonstrate that the treatment condition is casually associated with the 

disappearance of the illness. In the counterfactual framework, we can determine that the 

treatment condition is causally associated with the disappearance of the illness by observing a 

parallel universe, where the only difference is exposure to the treatment condition. Causality can 

be established by observing the counterfactual condition because only variation in the treatment 

condition exists. Figure 2.8 represents the parallel universe counterfactual condition:  

 

 

 

 

Figure 2.8 
Parallel Universe Example of a Counterfactual Condition. 

 Figure 2.8 represents our parallel universe example, where the same 50 participants are 

observed in each universe (“A” or “B”) and the only difference between the two universes is 

                                                
9 The counterfactual framework represents the primary theoretical guidance for the development of the GAPSM 
methodology. 
10 A treatment condition refers to a single independent variable hypothesized to influence an outcome of interest. 
The term treatment condition is used to conform with later discussions about statistically establishing a 
counterfactual condition.  

Assignment (A) T1   T2   T3 

YA1   TC                   YA2 
       
YB1      YB2  
 

50 participantsA 
 
50 participantsB 
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exposure to the treatment condition at T2. Consistent with our example, Y1 represents the 

observation of the illness, YA2 represents the disappearance of the illness, and YA2 represents the 

persistence of the illness. In universe A the 50 participants are exposed to the treatment condition 

and we observe the disappearance of the illness at T3, but in universe B the 50 participants are 

not exposed to the treatment condition and we do not observe the disappearance of the illness at 

T3. Theoretically, this parallel universe example establishes a causal relationship between the 

treatment condition and the disappearance of the illness because it establishes that the treatment 

condition is both a necessary and a sufficient cause of the disappearance of the illness, when 

holding all unobserved variables (Z) constant. To state differently, without exposure to the 

treatment condition the disappearance of the illness did not occur. Universe B represents the 

counterfactual condition in this example. However, given that the observation of a parallel 

universe is currently impossible scholars are required to establish counterfactual conditions in 

less ideal ways.  

 The fundamental strategy for establishing a counterfactual condition is the experimental 

design (Lewis, 1979; Roese, 1997). The experimental design requires the random assignment of 

participants into two groups: treatment and control (Jackson, 1977). The treatment group 

includes the participants exposed to the TC, while the control group represents the counterfactual 

condition (i.e., what would be observed if X had never occurred?; Roese, 1997; Shadish et al., 

2002). Furthermore, since a parallel universe cannot be observed, we assume that all other 

unobserved variables (Z) are normally distributed in the population and are held constant through 

the process of random selection and random assignment (Shadish et al., 2002). This assumption 

is conditional on the hypothesized sampling distribution, where the aggregation of multiple 

samples would provide the true association between the treatment condition and an observed 

outcome (Morgan and Winship, 2015). Returning to the example provided above, let us take a 
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sample of 100 participants with an illness. We randomly assign 50 participants to the treatment 

group and 50 participants to the control group under the assumption that their characteristics are 

normally distributed in the population. Below represents the experimental design: 

 

 

 

 

 

Figure 2.9 
Example of a True Experiment: Participants are Randomly Assigned. 

 Figure 2.9 represents the true experimental design with randomized assignment (AR) to 

the treatment and control groups. At T1 we observe the illness for both the treatment and control 

groups, at T2 the treatment group is exposed to the treatment condition (TC), and at T3 we 

observe differences in the persistence of the illness (DY) between the treatment and control 

groups. Consistent with the parallel universe example, the true experiment suggests a causal 

association between the treatment condition and the disappearance of the illness (Shadish et al., 

2002). This conclusion can be derived from the assumption that our control group represents the 

counterfactual condition for our treatment group (Roese, 1997). While threats to validity can still 

impact the observed association, it is safe to assume that the random assignment of participants 

to the treatment and control groups randomly distributes unobserved characteristics potentially 

associated with both Y1 and Y2 (indicated by Z in the figures above) between the two groups 

(Shadish et al., 2002). The random distribution of unobserved characteristics to both the 

treatment and control groups allows scholars to assume that these factors will have limited 

AR T1   T2   T3 

50p  Y1   TC                   Y2 
        
50p Y1      Y2 
 

Treatment 
 
Control 
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impact on the observed association succeeding replication of the study (Spirtes et al., 2000).11 Of 

importance, however, is that although one true experiment suggests a causal association between 

a treatment condition and an outcomes of interest, the aggregation of replications can provide 

evidence indicating a causal association, or a lack thereof, between a treatment condition and an 

outcome of interest (Spirtes et al., 2000).  

 The ability to implement a true experimental design is quite limited in the social sciences, 

and this is especially germane in criminology (Singleton and Straits, 2010). Primarily, this 

limitation is a result of the potential unethical circumstances associated with randomly assigning 

individuals to a treatment condition. Generally, as a consequence of this inability social scientists 

rely on non-experimental methodologies to examine the association between a treatment 

condition and various outcomes of interest. Unlike experimental research, non-experimental 

research designs remove the ability to establish causal associations between a treatment 

condition and outcome of interests as a function of the inability to control for unobserved 

predictors of the treatment condition (Spirtes et al., 2000). If unobserved characteristics do 

influence the observed association between a treatment condition and an outcome of interest it is 

likely a consequence of various threats to validity (e.g., regression, maturation, and attrition; 

Shadish, Cook, and Campbell, 2002).  Perhaps the most salient threat to validity in non-

experimental designs is that of self-selection bias (Lewis, 1979). The issue of self-selection bias 

only arises in non-experimental designs and is imperative to control if one wishes to establish of 

causality.  

2.2. Self-Selection Bias 

  In the context of non-experimental designs, self-selection refers to the process in which 

individual predispositions increase or decrease the probability of selection into the treatment and 

                                                
11 Various factors (e.g., attrition, history, and limited generalizability) could serve as limitations for experimental 
designs and impact the validity of the findings.  
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control groups, which biases the observed association between a treatment condition and an 

outcome of interest (Spirtes et al., 2000). Both genetic and non-genetic predispositions influence 

the probability of selection into treatment and control groups (Heckman, 1990b). Let us rely on 

the illness example again.  

 

 

 

 

Figure 2.10 
Example of a Non-Experimental Design: Participants Were Not Randomly Assigned. 

 Figure 2.10 represents a non-experimental design, where non-random assignment (ANR) 

was used to classify the 100 participants into the treatment and control groups. Note that even 

though 50 participants were assigned to the treatment and control groups, their selection into 

these groups was partially based on the individuals’ proclivities. The same outcome is observed, 

the disappearance of an illness after exposure to the treatment condition, but causality cannot be 

determined. The fundamental reason causality cannot be determined is that individual 

predispositions could have increased the probability of exposure to the treatment condition and 

the probability of the disappearance of an illness. Stated differently, non-experimental designs 

remove the ability to establish causality, resulting from the inability to hold all unobserved 

variables constant between the two groups (Shadish et al., 2002). Theoretically, the unobserved 

variables increasing or decreasing the probability of exposure to the treatment condition can be 

demarcated into biological and environmental factors (Morgan and Winship, 2015).  

Formula 2.1 is a simple representation of the potential confounding factors theoretically 

establishing a spurious association between a treatment condition and Y.  

[Formula 2.1] 

ANR T1   T2   T3 

50p Y1   TC   Y2 
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! = #$ + &(( + )) 

In this equation, &(( + )) represents the genetic (G) and environmental (E) factors 

predisposing an individual to the treatment condition and the observed outcome, #$ represents 

the treatment condition, and ! represents the observed outcome. As specified, any observed 

variation in ! is the sum of #$ + &, where Z could be theoretically observed or unobserved 

(Morgan and Winship, 2015). It is impossible to account for all observed or unobserved 

potentially confounding variables in a non-experimental design given the infinite number of 

variables that could account for causal association between treatment condition and Y (Morgan 

and Winship, 2015). In contemporary scholarship there are various methods to approximate the 

effects of &(( + )) on the observed association between the outcome of interest and the 

treatment condition. 

The most common method is to establish a quasi-experimental design, where some of the 

potentially confounding variables could account for association between the treatment condition 

and the outcome of interest are held constant (Morgan and Winship, 2015). A quasi-experimental 

design refers to an empirical assessment where a counterfactual condition is approximated using 

statistical, or methodological, techniques (Singelton and Straits, 2010). Generally, quasi-

experimental designs create counterfactual conditions where the estimates produced resemble the 

estimates that would be observed in a true experimental design (Morgan and Winship, 2015). 

Thus, even though causality remains unattainable, quasi-experimental designs allow scholars to 

approach (to a certain degree) the causal effects of the treatment condition on the outcome of 

interest (Shadish et al., 2002).  

2.2. Self-Selection in Criminology 

 In the social sciences, especially criminology, scholars generally make assumptions about 

the effects of social self-selection that may be unwarranted (e.g., Agnew, 1992; Akers, 2011; 
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Gottfredson and Hirschi, 1990; Sampson and Laub, 1995). While self-selection refers to both 

sociological and biological factors that could potentially confound an association between two 

variables, social self-selection refers only to self-selection based upon sociological factors. 

Specifically, scholars generally assume that social self-selection has limited, or no, impact on the 

theoretical association between a treatment condition and an outcome of interest. Remarkably, 

the effects of these assumptions are commonly overlooked in contemporary scholarship. For 

example, Sampson and Laub (1995) assume that social self-selection has limited impact on the 

association between marriage and desistance from criminal activity and empirical examinations 

generally rely heavily on this assumption (e.g., Forrest, 2014; Simons and Barr, 2014; Warr, 

1998). To quote Sampson and Laub (1995):  

“And because these relationships obtain within the delinquent group, it is difficult 

to dismiss the results on the basis of a stability or self-selection argument that 

antisocial children simply replicate their antisocial behavior as adults – that 

delinquents invariably continue their interactional styles in adult life, and hence 

have incompatible relations with family, work, and other institutions of social 

control.” (p. 147) 

 Thus, some criminological scholars rarely consider establishing a counterfactual condition to 

examine if social self-selection influences the association between marriage and desistance from 

criminal activity (e.g., King, Massoglia, and Macmillian, 2007; Sampson, Laub, and Wimer, 

2006). Although this is just one example, a variety of the observed associations in criminology 

could be influenced by the effects of social self-selection. Since a majority of the literature in 

criminology assumes that social self-selection has limited influence on observed associations, it 

is possible that poor replication would be observed when employing quasi-experimental designs 

(Ioannidis, 2005).  
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In addition to assuming that social self-selection has limited influence on observed 

associations, criminologists also assume that biological factors rarely increase or decrease the 

probability of exposure to a treatment condition (see Barnes et al., 2014). Nevertheless, this 

assumption is generally invalid (Plomin, DeFries, and Loehlin, 1977). Quantitative genetic 

methodologies have provided important insight into how biological and social self-selection 

could potentially increase or decrease the probability of exposure to a treatment condition. To 

reanalyze the validity Sampson and Laub’s (1995) assumption, an analysis conducted by 

Johnson and colleagues (2004) demonstrated that marriage is highly heritable (h2 = .61) and 

meta-analyses conducted by Mason and Frick (1994), Rhee and Waldman (2002), and Bergen 

and colleagues (2007) demonstrated that on average 50 percent of the variation in antisocial 

behavior is accounted for by genetic factors. In combination, these two results generate the 

expectation that the observed association between marriage and desistance from criminal activity 

would be attenuated when accounting for the effects of biological self-selection. Consistent with 

these expectations, Barnes and Beaver (2012) demonstrated that even though marriage still 

influenced desistance from criminal activity, the strength of the association was attenuated by 

approximately 60 percent. Examples of self-selection potentially confounding the association 

between two sociological concepts exist throughout criminology (e.g., Barnes, Beaver, and 

Boutwell, 2011; Nedelec, Park, and Silver, 2016; Nedelec, Richardson, and Silver, 2017). 

 Commonly, scholars can adjust for the effects of self-selection by approximating quasi-

experimental research designs through the implementation of various statistical techniques. In 

the current context, a quasi-experimental research design refers to the process in which 

participants are not randomly assigned to the treatment condition, but the design has similar 

structural characteristics to that of a true experiment (Shadish et al., 2002). Generally, quasi-

experimental designs can be identified by three characteristics, the effort to identify threats to 
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internal validity, the effort to control by design, and the effort to make coherent pattern of 

matches (Shadish et al., 2002). Additionally, various statistical techniques can be implemented 

where a counterfactual condition is considered to identify threats to internal validity, control by 

design, and make a coherent pattern of matches can be approximated and used to assess the 

causal association between multiple concepts. To demonstrate and advance upon the statistical 

techniques used to establish counterfactual conditions, chapter 3 reviews the common standard 

social science methodologies (SSSMs) and the quantitative genetic methodologies used to 

establish counterfactual conditions and proposes a new statistical technique for establishing a 

counterfactual condition.  
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CHAPTER 3: STRATEGIES IDENTIFYING AND ADJUSTING FOR SELF-
SELECTION 

 
 As reviewed in the previous chapter, self-selection bias is the one of the fundamental 

factors influencing the inability to establish causality within the social sciences. To reiterate, 

self-selection refers to the process in which biological and environmental conditions increase or 

decrease the probability of exposure to a treatment condition and an outcome of interest (Guo 

and Fraser, 2015). Although random assignment into the treatment condition is a method for 

handling self-selection, sociologists and criminologists can rarely rely on experimental designs to 

examine the association between a treatment condition and an outcome of interest. Nevertheless, 

various scholars have developed statistical techniques to establish counterfactual conditions that 

could potentially approximate the counterfactual condition of a true experiment (Purcell et al., 

2009; Rosenbaum and Rubin, 1983; Rosenbaum and Rubin, 1984; Pike et al., 1996). The current 

chapter reviews five statistical methodologies (i.e., linear regression analysis, propensity score 

matching, ACE decomposition models, MZ difference score models, and polygenic risk score 

models) used to approximate a counterfactual condition. Additionally, the final section of the 

current chapter proposes a new methodology – genetically adjusted propensity score matching 

(GAPSM) – which can be used to approximate a counterfactual condition that adjusts for the 

observed genetic and observed environmental factors influencing self-selection into a treatment 

condition.  

 

3.1. Standard Social Science Methodologies  

Self-selection is fundamental issue in contemporary sociological scholarship. As outlined 

in Chapter 2, the inability to randomly assign individuals to a treatment or control condition, 

which is common in sociology and criminology, drastically reduces the capacity to establish 

causality. Furthermore, those same predispositions likely increase the probability of spuriousness 
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between a treatment condition and an outcome of interest.12 To estimate the causal association 

between a treatment condition and an outcome of interest, non-experimental designs necessitate 

the establishment of a true counterfactual condition. A true counterfactual condition is the 

hypothetical situation were only variation in a treatment condition can account for variation in an 

outcome of interest. Due to the inability to examine criminological treatment conditions with 

experimental designs, sociologists have typically employed two statistical techniques to adjust 

for the effects of self-selection.  

 

3.1.1. Ordinary least squares and binary logistic regression (statistical control method) 

The current discussion will focus on the introduction of statistical controls into two 

regression models (e.g., ordinary least squares (OLS) and binary logistic regression (BLR)), 

which provide the foundational components for the majority of advanced regression models 

(Fox, 2016). The term statistical control refers to an exogenous variable with a theoretical or 

empirical association with both the treatment condition and the outcome of interest (Draper and 

Smith, 2014). Regarding functionality, statistical controls empirically associated with the 

treatment condition and the outcomes of interest will remove all covariance between the three 

variables (Draper and Smith, 2014). Only the remaining variation in the treatment condition can 

predict the remaining variation in the outcomes of interest. Fundamentally, this technique 

attempts to establish causality by decreasing the probability of spuriousness. Notably, to assure 

that the introduction of a statistical control removes the appropriate amount of variation in the 

treatment condition and the outcomes of interest, OLS and BLR requires scholars to satisfy the 

respective assumptions of the statistical tools (i.e., linearity, heteroscedasticity, and non-random 

                                                
12 Throughout the current chapter, I describe the statistical techniques regarding a treatment condition and an 
outcome of interest. While seemingly convoluted, this provides uniformity when describing divergent statistical 
analyses and the ability to establish causality.  
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error; Fox, 2016). If a statistical control violates the respective assumptions an imprecise amount 

of variation in the treatment condition or the outcome of interest might be removed (Draper and 

Smith, 2014).  

Formula 3.1 represents the bivariate scalar specification for an OLS regression model. 

Commonly, OLS regression is used to predict variation in a continuous outcome measure. OLS 

regression minimizes the sum of the squared differences between the dependent and independent 

variables to probabilistically estimate a linear function (Montgomery, Peck, and Vining, 2012). 

This calculation provides scholars a linear function with the highest probability of representing 

the population given the data (Fox, 2016). The bivariate calculation assumes that variation in the 

treatment condition (#$) can be used to predict the variation in the outcome of interest (!; 

Montgomery, Peck, and Vining, 2012). In a multivariate model (represented by Formula 3.2) the 

variation in the treatment condition (#$) and the variation in the independent variable (statistical 

control; +) is used to predict the variation in the outcome of interest (!; Fox, 2016). Consistent 

with probability theory, any covariance between treatment condition and X, and X and Y would 

be removed preceding the estimation of the linear function, ensuring the establishment of the 

best linear unbiased estimate (aka, BLUE; Seber and Lee, 2012). Consistent with standard social 

science methodologies, social scientists often only adjust for the effects of observed 

environmental factors but not the observed or unobserved genetic and the unobserved 

environmental factors (Draper and Smith, 2014).  

 [Formula 3.1] 

! = ,- + ,.#$./ 

 
[Formula 3.2] 

! = ,- + ,.#$./ + ,0+0/ 
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Statistical controls function similarly in BLR models. Formula 3.3 represents the 

bivariate estimation of a BLR model. Divergent from OLS technique, BLR is used to predict 

variation in dichotomous outcomes (Draper and Smith, 2014). Furthermore, unlike OLS 

regression, BLR relies on the iterative maximum likelihood estimation technique to determine 

the linear function that best represents the observed data (Montgomery et al., 2012). To estimate 

a BLR model, the dependent variable must be transformed into a logged odds (log	( 5
.65

)), which 

creates an unbounded distribution of scores (Draper and Smith, 2014). Regarding statistical 

controls, any covariance between treatment condition and X, and X and Y would be removed 

prior to predicting variation in the outcome of interest (!; Fox, 2016). Again, social scientists 

commonly only adjust for the effects of observed environmental conditions. 

 [Formula 3.3] 

log	(
!

1 − !) 	= ,- + ,.#$./ 

[Formula 3.4] 

log	(
!

1 − !) 	= ,- + ,.#$./ + ,0+0/ 

 

 The statistical control method is widespread in criminology and sociology. While the 

simplicity of statistical controls makes the technique appealing, two substantive limitations exist 

when considering the potential effects of self-selection (Fox, 2016).13 First, the method suffers 

from an inability to establish a counterfactual condition (Guo and Fraser, 2015).14 As described 

in Chapter 2, a counterfactual condition is addressed by the question “what would have occurred 

                                                
13 To reiterate, social self-selection refers to the process in which sociological factors increase or decrease the 
probability of exposure to a treatment condition. 
14 Counterfactual conditions can be estimated with regression based techniques but require the user to satisfy all of 
the assumptions associated with said technique (Vanderweele, 2015). 
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in terms of the outcome if the treatment condition was not introduced?” Furthermore, the only 

way to establish a counterfactual is by randomly distributing, or holding constant, all other 

exogenous variables at varying levels of exposure to the treatment condition. Predictably, the 

statistical control technique cannot establish a counterfactual condition, which results from the 

inability to randomly distribute, or hold constant, all other variables at varying levels of exposure 

to the treatment condition. Consequently, the statistical control technique is ineffective at 

adjusting for social self-selection and establishing a causal association between the treatment 

condition (#$) and the outcome of interest (!). Second, since the statistical control technique 

was created for experimental conditions, scholars often ignore the inability to adjust for the 

observed or unobserved genetic predictors of self-selection (i.e., biological self-selection; Guo 

and Fraser, 2015). This is a particular problem in SSSMs, where it is assumed that biological 

factors have limited influence on selection into the treatment condition (Plomin et al., 2013). 

This limitation is only addressed when moving from SSSMs to quantitative genetic 

methodologies.  

3.1.2. Propensity score matching and generalized propensity score matching 

 To address the first limitation associated with the statistical control technique, 

Rosenbaum and Rubin (1983) developed propensity score matching (PSM). PSM was designed 

as a data reduction matching technique. Prior to the development of PSM, scholars relied on 

exact matching to establish counterfactual conditions (Guo and Fraser, 2015). Exact matching 

required scholars to find an individual who experienced the TC, identify key characteristics, and 

match the individual who experienced the treatment condition to an individual who did not 

experience the treatment condition. This allowed scholars to establish counterfactual conditions 

where the key characteristics were held constant at varying levels of exposure to the treatment 

condition (i.e., the treatment and control case had the same score on the key characteristics; 
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Rosenbaum and Rubin, 1983). Although beneficial, exact matching is cumbersome when 

scholars match participants on an increasing number of key characteristics. Furthermore, when 

the number of key matching characteristics is increased the probability of identifying an exact 

match decreases. The difficulty to identify exact matches encouraged Rosenbaum and Rubin 

(1983) to develop a technique where scores on key characteristics could be aggregated, 

weighted, and matched between individuals at varying levels of exposure to the treatment 

condition.  

 As determined by Rosenbaum and Rubin (1983; 1984; 1985), the simplest technique to 

aggregate and weight scores on key characteristics was through the estimation of a binary 

logistic regression (BLR).15 Distinct from OLS regression, BLR analysis allows scholars to 

estimate the probability of experiencing a dichotomous outcome given an individual’s score on 

an independent variable. These probabilities can be aggregated, where an individuals’ probability 

of experiencing a dichotomous outcome is representative of their observed characteristics. 

Furthermore, the influence of an observed characteristic on the treatment condition (i.e., the 

slope estimate) can be employed as a weight. By using the slope estimate as a weighting 

mechanism, Rosenbaum and Rubin (1983; 1984; 1985) ensured that aggregated probability 

accurately represented the contribution of each independent variable to the prediction of the 

dichotomous outcome. While labeled as a propensity score, the score represents an individuals’ 

predicted probability of experiencing a dichotomous outcome given their characteristics. In 

principle, propensity scores were a well-developed data reduction technique designed to allow 

scholars to match participants on numerous key characteristics (Rosenbaum and Rubin 1983).  

 In contemporary scholarship, the estimation of a propensity score with a dichotomous 

treatment condition remains consistent with Rosenbaum and Rubin’s (1983; 1984; 1985) original 

                                                
15 During the development of this technique, scholars were primarily interested in dichotomous TCs such as the 
diagnosis of a disease. 
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technique. Formula 3.5 represents the estimation of the binary logistic regression. Distinct from 

our statistical control model the estimation process requires scholars to regress the dichotomous 

treatment condition (#$) on the key characteristics of interest (+./ + +0/ + +9/). Succeeding this 

estimation, individuals’ scores for each key characteristic are aggregated, weighted (,- +

,.+./ + ,0+0/ + ,9+9/), and transformed (1 + exp( ,- + ,.+./ + ,0+0/ + ,9+9/)) into a 

propensity score (=; Formula 3.6). The calculations associated with estimating a propensity score 

for a dichotomous treatment condition makes the technique favorable as compared to exact 

matching techniques (Apel and Sweeten, 2010; Austin, 2011; Guo and Fraser, 2015). Despite 

being favorable, the estimation process described above requires scholars to use a dichotomous 

treatment condition.  

 [Formula 3.5] 

log	(
#$

1 − #$) 	= ,- + ,.+./ + ,0+0/ + ,9+9/ 

[Formula 3.6] 

 

= =>[1 + exp( ,- + ,.+./ + ,0+0/ + ,9+9/)]
A

/B.

 

 

 To address this limitation, multiple scholars in a series of papers (Hirano and Imbens, 

2004; Imbens, 2000; Joffee and Rosenbaum, 1999) developed techniques to estimate propensity 

scores for ordinal, multinomial, and continuous treatment conditions. Due to the focus of the 

current study, only Hirano and Imbens’ (2004) generalized propensity score estimator (GPS) for 

continuous treatment conditions is discussed. Generalized propensity score (GPS) estimation is a 

two-step process. First, as presented in Formula 3.7, GPS requires scholars to assume a normally 

distributed treatment condition (Hirano and Imbens, 2004). Commonly this necessitates the 
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transformation of the treatment condition represented by g(TC/). Given that the treatment 

condition is a function of the independent variables (X/) a simple maximum likelihood regression 

can be estimated. As it should be noted, F represents the normality and  G0 represents the 

variance. 

 [Formula 3.7] 

g(TC/)|X/	~	F(,- + ,.+./ + ,0+0/ + ,9+9/, G0) 

 

Second, the estimation of the GPS requires the establishment of covariate balance prior to 

the estimation of propensity scores (Formula 3.8). Balance refers to the correspondence of 

covariate distributions between treatment and control groups. Due to the inability to establish 

precise treatment and control groups, GPS uses a six-step process to estimate the equivalence of 

key independent variables (+./ + +0/ + +9/) at varying levels of exposure to the treatment 

condition. First, GPS necessitates the binning of the treatment distribution into n intervals. 

Second, GPS is computed at each n interval. Third, GPS scores are binned using m intervals. 

Fourth, GPS calculates the mean differences on each covariate for individuals that belong to the 

same binned treatment condition (n), and individuals that belong to the same binned GPS score 

(m), but a different binned treatment condition (n). Fifth, the mean differences are aggregated 

and weighted using the number of observations at each GPS interval. Sixth, balance is assessed 

by using Student’s t or Bayes factor. As indicated by the six-step process, the propensity score 

(=) and balance are estimated simultaneously. The conditional expectation of the outcome given 

the treatment and GPS scores can be estimated with Formula 3.9, whereas the dose-response 

function to discern treatment effects and 95 percent confident intervals can be estimated with 

Formula 3.10. These are described in detail in Hirano and Imbens (2004). 

 



 31 

 

 [Formula 3.8] 

=K/ =
1

√2NGO0
exp	 P−

1
√2GO0

[(g(TC/) − ,- + ,.+Q./ + ,0+0/ + ,9+9/)]
0R 

 [Formula 3.9] 

= = E[Y/|TC/, U/] = V- + V.TC/ + V0TC/0 + VWR/ + VYR/0 + VZTC/R/ 

[Formula 3.10] 

= = E[Y/] =
1
F (VO- + VO.TC + VO0TC

0 + VOWrO/(TC/, &Q./) + VOYrO(TC/, &Q./)
0 + VOZ#$rO(TC/, &Q./)) 

 

Succeeding the estimation of the propensity score (=), two categories of matching 

techniques are generally employed within contemporary literature: greedy matching and optimal 

matching.16 Greedy matching refers to matching techniques that create a subsample of cases with 

the same probability of being assigned to the treatment condition (i.e., propensity score). 

Included in this category are Mahalanobis metric matching, nearest neighbor matching, nearest 

neighbor matching in a caliper, and nearest available Mahalanobis metric matching. Due to the 

overlap in the matching techniques, descriptions of Mahalanobis metric matching and nearest 

neighbor matching within a caliper can generalize to the other techniques listed above.  

Mahalanobis metric matching was invented preceding the creation of propensity scores 

and matches participants using Formula 3.11. The letters “u” and “v” represent vectors of values 

for matched variables for treatment (i) and control (j) cases, respectively. C represents the sample 

covariance matrix. While not present in Formula 3.11, the estimated propensity score (=) is 

                                                
16 These matching techniques are only valid with a dichotomous treatment condition. For continuous TC, matching 
is performed as part of the GPS statistical calculation. Other matching techniques do exist in the literature (e.g., 
genetic matching; Dehejia and Wahba, 2002; Diamond and Sekhon, 2013). Genetic matching refers to a non-
genetically sensitive form of identifying participants with similar propensity scores. 
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treated as an additional covariate in the calculation and is intended to reduce the average distance 

between individuals on all covariates. As the number of covariates increases, the average 

distance between the treatment and control cases increases.  

 [Formula 3.11] 

^(_, `) = (u − v)aC6.(u − v) 

 

Nearest neighbor matching within a caliper is represented by Formula 3.12. As indicated 

by the formula, matches are determined by the difference between the estimated propensity 

scores for the treatment (=/) and the control (=b) cases. Distinct from nearest neighbor matching, 

nearest neighbor matching within a caliper requires the difference between propensity scores to 

be less than the specified caliper value (c). Generally, the specified value should be less than .10 

and determined through trial and error (Apel and Sweeten, 2010; Guo and Fraser, 2015). The 

specified caliper value has a direct impact on the balance of covariates.  

 [Formula 3.12] 

$(=/) = d=/ − =bd < c 

Optimal matching is a more cumbersome mathematical process designed to minimize the 

total sample propensity scores distance (∆). Formula 3.13 represents optimal matching. In 

Formula 3.13, “s” represents a matched pair, where “gh” equals the propensity score for a 

treatment case, “ih” equals the propensity score for a control case, and the difference between 

two cases is represented by “(|gh|ih|)”. “j” represents the weight of the individual difference 

and “k” represents the weight of the average distance (gh, ih). This calculation should optimize 

matches by reducing the average sample distance on the propensity score to the absolute 

minimum. Scholars have encouraged the employment of multiple control cases for each 

treatment case when conducting greedy or optimal matching (Guo and Fraser, 2015).  
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 [Formula 3.13] 

∆	=>j(|gh|ih|)k(
h

hB.

gh, ih) 

To ensure the establishment of an empirically valid counterfactual condition, scholars 

must demonstrate balance between the treatment and control groups on the specified covariates. 

To reiterate, balance is the observed equivalence of the distribution for key covariates between 

treatment and control cases. To truly demonstrate balance, it must be determined that the 

distribution of scores on specified covariates is not divergent between treatment and control 

cases. Generally, scholars establish balance by estimating the standardized effect size for the 

mean difference and a Student’s t (Guo and Fraser, 2015). Notably, if balance cannot be 

demonstrated using the standardized effect size for the mean difference and a Student’s t, 

quartile differences can be estimated. If balance cannot be achieved, scholars often recommend 

transforming the covariates into semi-continuous or categorical variables (Guo and Fraser, 

2015).  

Consistent with the counterfactual logic, PSM allows scholars to establish a 

counterfactual condition where all observed environmental factors are held constant in post-

matching analysis. Thus, PSM allows scholars to assume that observed environmental 

characteristics have limited influence on the outcome of interest because both the treatment and 

control conditions possess the same distribution of characteristics. In a theoretical sense, holding 

all the environmental factors constant should produce a counterfactual condition approximating 

that of a true experiment. PSM identifies a subsample of similar cases (i.e., cases matched on the 

specified covariates) and estimates post-matching analyses to determine if variation in the 

treatment condition corresponds to variation in the outcome of interest. These post-matching 
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analyses are primarily bivariate analyses (e.g., outcome of interest regressed on the TC) of only 

the subsample identified by PSM. Although cumbersome, scholars have demonstrated the 

substantial advancements, when considering causality, offered by PSM when compared to the 

statistical control technique (Guo and Fraser, 2015).  

 Within the social sciences, PSM is used to examine the association between a variety of 

treatment conditions and observable outcomes. For instance, scholars have examined the 

association between gang membership and victimization (DeLisi et al., 2009), college 

programming and educational attainment (Melguizo, Kienzl, and Alfonso, 2011), special 

education and learning/behavioral outcomes (Morgan et al., 2010), and a variety of other 

treatment outcome associations (e.g., Braga, Piehl, and Hureau, 2009; Harding, 2003; Levine and 

Painter, 2003; Pompoco et al., 2017).17 Furthermore, evident by the wide variety of scholarship, 

PMS can be conducted with numerous treatment conditions (McCormick et al., 2013; Mears and 

Cochran, 2013; Mears, Cochran, and Beaver, 2013; Mears et al., 2012). PSM is highly regarded 

in the social sciences (Dehejia and Wahba, 2002; Guo and Fraser, 2015), resulting from the 

ability to establish a counterfactual condition where all observed environmental conditions are 

held constant at varying levels of exposure to the treatment condition. Nevertheless, the ability of 

PSM to achieve a true counterfactual condition is limited by the SSSMs used to estimate the 

propensity scores. Consistent with the discussion regarding statistical controls, propensity scores 

are generally used to only adjust for the effects of observed environmental influences, never 

                                                
17 Considering the treatment conditions of interest – intelligence and educational attainment – a limited quantity of 
research has been conducted using PSM. More precisely, while intelligence has been widely examined using the 
statistical control technique, scholars have rarely considered intelligence as a treatment condition. Regarding 
educational attainment, scholars have demonstrated that educational achievement is associated with future criminal 
behavior (Backman, 2017; Blomberg, Bales, and Piquero, 2012). Remarkably, the majority of scholarship assessing 
the effects of educational attainment and future antisocial behavior examines the effects of prison education 
programs and subsequent recidivism (e.g., Blomberg et al., 2012; Duwe and Clark, 2014; Kim and Clark, 2013). 
Overall, as demonstrated by various scholars (e.g., Apel and Sweeten, 2010; Dehejia and Wahba, 2002; Guo and 
Fraser, 2015) the results of post-PSM analyses are primarily regarded as more accurate and conservative than 
statistical control models. 
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considering the potential effects of biological self-selection. As demonstrated in the subsequent 

sections, scholars in quantitative genetics have developed various techniques to examine and 

adjust for biological self-selection into a treatment condition.  

 

3.2. Quantitative Genetic Methodologies: Conceptual Background18 

 Distinct from standard social science methodologies, quantitative genetic methodologies 

rely on a theoretical foundation provided by evolution and molecular genetics to adjust for the 

effects of biological self-selection (Falconer and McKay 1996). To briefly provide the theoretical 

foundation for behavioral genetics, Darwin (1859) and subsequent scholars (Churchill, 1980; 

Eldredge, 1985; Fisher, 1919; Mayr and Provine, 1998; Mendel, 1866; Weismann, 1893) 

provided a theoretical and empirical basis in which the hypotheses associated with phenotypic 

heredity could be integrated into statistical analyses through various assumptions. Specifically, 

scholars could limit the confounding effects of genes by implementing statistical analyses on 

data collected from genetically related portions of the population (Plomin et al., 2013). One 

portion of the population important to behavior geneticists are monozygotic twins (Plomin et al., 

2013). Evident by research on zygosity, MZ twins share 100 percent of their genetic makeup 

(Plomin et al., 2013; Watson et a., 2008). In statistical analyses, the knowledge that MZ twins 

share 100 percent of their genetic makeup allows scholars to assume that phenotypic differences 

between MZ twins can only be accounted for by differences in exposure to environmental 

conditions (the non shared environment; Barnes, Beaver, and Boutwell, 2011; Barnes et al., 

2014; Plomin et al., 2013). As discussed further in sections 3.3.1. and 3.3.2., the conceptual 

framework outlined above provides the foundation for developing the mathematical assumptions 

associated with the ACE decomposition model and MZ difference models. 

                                                
18 Please see Appendix A for a detailed description of evolution, natural selection, heredity, genetic relatedness, and 
candidate gene research. 
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 While behavioral genetics offers insight into the genetic factors underlying phenotypic 

variance within the population, these methodologies cannot identify the specific genes 

influencing the expression of a phenotype. To address the limitations of behavioral genetics and 

candidate gene research (see Appendix A), contemporary scholarship has employed various 

technological advancements to conduct Genome Wide Association Studies (GWAS; Conley and 

Fletcher, 2017). GWAS have been the foremost technique for examining the association between 

molecular genetic factors and phenotypic variation (Bush and Moore, 2012; Chabris et al., 2015). 

Generally, GWAS are performed by drawing information from the entire genome19 of each 

participant and isolating the specific genetic markers associated with the phenotype of interest 

(Bush and Moore, 2012). While the statistical analysis is straightforward, the phenotype of 

interest is regressed on the whole genome and therefore GWAS needs thousands of participants 

to satisfy the power requirements associated with an enormous number of independent variables 

(Conley and Fletcher, 2017).  

One of the foremost assessments employing GWAS was the recent study conducted by 

Lee and colleagues (2018), which examined the association between the whole genome and 

educational attainment. The research team collected and coded the whole genome of over 1.1 

million participants. The findings indicated that 1,271 genome-wide loci20 were predictive of 

educational attainment. Furthermore, these findings suggested that educational attainment had a 

heritability estimate of .11 to .13, which was divergent from behavioral genetic estimates (.52; 

                                                
19 In the current context, the entire genome refers to approximately .5 percent of the genetic material that varies 
between individuals. 
20 A locus (plural: loci) is the position on the specified chromosome that could correspond to coding genes. 
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Polderman et al., 2015).21 Although GWAS have provided an important advancement in our 

understanding of the association between molecular genetics and phenotypic variation, 

limitations persist. The primary limitations associated with GWAS are the inability to directly 

estimate the genetic contribution when controlling for environmental conditions and the inability 

to test gene-environment interactions. As discussed in subsection 3.3.3., scholars generated a 

conceptual and mathematical formula estimating the aggregated genetic effects associated with 

phenotypic variation (Conley and Fletcher, 2017). 

 

3.3. Quantitative Genetic Methodologies: Adjusting for Self-Selection 

 To review, quantitative genetic methodologies are statistical techniques designed to 

adjust for the potential influence of biological predispositions. When considering self-selection, 

these quantitative genetic methodologies allow scholars to adjust for the observed and 

unobserved effects of biological self-selection into a treatment condition. Echoing the sentiments 

in Chapter 2, two types of self-selection can confound the association between a treatment 

condition and an outcome of interest: social self-selection and biological self-selection. To adjust 

for the potential effects of self-selection, scholars must approximate a true counterfactual 

condition, in which all observed and unobserved biological and environmental factors are 

constant across the treatment and control conditions. As outlined in section 3.1, while SSSMs 

adjust for the influence of observed environmental factors on the TC, they often ignores the 

potential biological factors influencing the probability of exposure to a treatment condition. To 

                                                
21 These findings – and others – from GWAS have alluded to the issue of missing heritability. The issue of missing 
heritability refers the divergence between the heritability estimates in behavioral genetics (i.e., twin and adoption 
studies) and the heritability estimates produced by molecular genetics. Various scholars have suggested that this 
divergence could be accounted for by the inability to achieve satisfactory power (e.g., Okbay et al., 2016; Chabris et 
al., 2015; Conley and Fletcher, 2017), which is evident by the recent reduction in the missing heritability for various 
phenotypes. Overall, the importance of this is to outline that divergences between quantitative and behavioral 
genetic methodologies exist (Chabris et al., 2015; Conley and Fletcher, 2017). 
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address these limitations, the three techniques discussed in the current section are quantitative 

genetic methodologies designed to adjust for any potential observed and unobserved biological 

self-selection.  

 

3.3.1. ACE decomposition model 

 The ACE decomposition model has remained as one of the foremost methodologies 

employed to quantify the influence of genetics on phenotypic variation (Coyne and Wright, 

2014; Jang, Livesley, and Vemon, 1996, Loehlin, 1992; Plomin et al., 2013). One can estimate 

the quantity of variance in a phenotype attributable to genetic (h2), shared (c2), and non shared 

environmental factors (e2; Loehlin, 1992; Neale and Cardon, 2013). This can be achieved 

through the employment of latent variable analysis (Neale and Cardon, 2013).22 The ACE 

decomposition model was established through reliance on the principals of Mendelian 

inheritance (Plomin, Chipuer, and Neiderhiser, 1994). To review, Mendel (1866) proposed that 

heredity followed three laws: the law of segregation, the law of independent assortment, and the 

law of dominance. Following Mendel’s (1866) guidance, a simple formal accounting for the 

variance in a phenotype can be produced.  

Three terms can be observed within Formula 3.14: lm, ln, lo. Simplistically, lm	refers to 

the variance in the phenotype, which is equal to the variance of genetic factors (ln) plus the 

variance of the environmental factors (lo). This formula indicates that the variance in a 

phenotype in a population is equal to the observed variance in genetic factors and the observed 

variance in environmental factors (Rushton et al., 1986; Neale and Cardon, 2013). As alluded to 

                                                
22 A discussion of general latent variable analysis and variance decomposition models can be found in McCutcheon 
(1987). McCutcheon’s (1987) discussion outlines the statistical principals associated with general latent variable 
analysis and variance decomposition models, which preceded the ACE model.  
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within previous discussions, the formula presented below does not accurately capture all the 

elements associated with observed variance.  

[Formula 3.14] 

lm = ln +	lo 

Researchers have identified that the variance in the environmental component (Formula 

3.15) can be demarcated into to sub-categories: the shared environment (lp) and the non shared 

environment (lo; Plomin et al., 2013). The shared environment refers to the commonalities 

experienced by individuals and the non shared environment refers to the distinct environmental 

conditions experienced by individuals (Scarr, Scarf, and Weinberg, 1980; Hetherington, Reiss, 

and Plomin, 2013; Plomin et al., 1994). While the shared environment has little influence on 

unrelated individuals, it is especially important when discussing the equal environments 

assumption associated with twin research (EEA; Barnes et al., 2014; Derks, Dolan, and 

Boomsma, 2006). Similarly, the variance associated with genetic factors can be demarcated into 

three categories: additive genetic effects (lq), dominant genetic effects (lr), and epistatic 

genetic effects (ls; Formula 3.16; Plomin et al., 2013). Additive genetic effects are when 

multiple alleles or multiple genes have an aggregated influence on the phenotype and dominant 

genetic effects are when only one allele or gene influences the phenotype (Carey, 2003; Plomin 

et al., 2013). Epistatic genetic effects are when the influence of one gene is conditioned upon the 

presence or absence of another gene (Christian, Kang, and Norton, 1974; Isik, Li, and Frampton, 

2003). The full equation is presented in Formula 3.17 and indicates that variance in phenotype 

(lm) is equal to the aggregated variance of the shared environment (lp), the non shared 

environment (lo), additive genetic effects (lq), dominant genetic effects (lr), epistatic genetic 

effects (ls), and any covariance between the terms 2uvwxy.,y0z. Consistent with basic statistics, 

any overlap in the variance of two distinct terms must be adjusted for to ensure that the variance 
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does not show up twice (Fox, 2016; Henly, 1993). Furthermore, Formula 3.17 theoretically 

implies that the variance in phenotype can be estimated by observing the terms on the right side 

of the equation.  

 

[Formula 3.15] 

lo = lp +	lo 

[Formula 3.16] 

ln = lq +	lr + ls 

[Formula 3.17] 

lm = lp +	lo + lq +	lr + ls + 2uvwx{.,{0z + ⋯ 

Although Formula 3.17 outlines the complex calculations used to estimate the variance in 

a phenotype, various assumptions can be relied on to simplify the formula. As presented in 

Formula 3.18, four major assumptions help simplify the mathematical equation. First, as 

represented by lq = lq +	lr + ls, behavioral and molecular geneticists have directly illustrated 

that additive genetic effects are the principal mechanism influencing the establishment of a 

complex phenotype (e.g., Davies et al., 2015; Delvin, Daniels, and Roeder, 1997; Hill, Goddar, 

and Visscher, 2008). Second, the covariance between the genetic and the shared environment is 

equal to zero ($wxq,p = 0). Third, the covariance between the genetic and the non shared 

environment is equal to zero ($wxq,o = 0). Fourth, the covariance between the shared 

environment and the non shared environment is equal to zero ($wxp,o = 0).  

 [Formula 3.18] 

ln = lq +	lr + ls 

$wxq,p = 0 

$wxq,o = 0 
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$wxp,o = 0 

As presented in the simplified Formula 3.19, variance in the shared environment (lp), the 

non shared environment (lo), and additive genetic effects (lq) should account for the variance 

associated with a phenotype. Observing the genetic and environmental factors associated with 

the variance in a phenotype is difficult to achieve with even the most advanced technology. To 

address this issue, scholars approached the analysis from the opposite direction, decomposing the 

variance in a phenotype into latent constructs through the employment of various theoretical 

assumptions (Kaplan, 2009; Plomin et al., 2013; Rijsdiik and Sham, 2002). 

 [Formula 3.19] 

lm = lp +	lo + lq 

This is best presented in Figure 3.1, where the variance in the phenotype is measured 

(represented by the square) and demarcated into various latent constructs, which are represented 

by the circles. Foundationally, the principals of genetic relatedness underlie the latent statistical 

processes associated with ACE modeling (Plomin et al., 2013). Scholars developed a method 

reliant on two subsamples of genetically related individuals to estimate the variance in a 

phenotype (Boomsma, Busiahn, and Peltonen, 2002; McGue, Osler, and Christensen, 2010; 

Vandenberg, 1996). Commonly, the two subsamples are MZ and DZ twins, but the ACE 

decomposition model can be estimated with other genetically related individuals (Plomin et al., 

2013).23 MZ twins are identical twins who share 100 percent of their genetic makeup and DZ 

twins are fraternal twins who share 50 percent of their genetic makeup. These two subsamples 

are commonly selected for various reasons, the foremost being that twins have a highly 

overlapping shared environment (Plomin et al., 2013). 

                                                
23 While the ACE decomposition model can be estimated with other genetically related individuals, the validity of 
the estimates drastically decreases resulting from the inability to accurately assume the existence of the shared 
environment (Plomin et al., 2013). 
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Figure 3.1 
Visual Demonstration of Decomposition of Variance Model.24 

 

 To use twin modeling to estimate an ACE decomposition model, additional assumptions 

are necessitated. The foremost assumptions made by behavioral geneticists are the equal 

environments assumption (EEA) and the random mating assumption. Briefly, the EEA argues 

that the effects of the shared environment on the variance of a phenotype is consistent across MZ 

and DZ twins and the random mating assumption argues that individuals randomly mate with 

other individuals (Rijsdiik and Sham, 2002; Rowe, 1983). Although discussions have appeared 

in prior literature (Barnes et al., 2014), strong evidence suggests that violating these assumptions 

has a limited effect on the estimates produced (Bailey, Dunne, and Martin, 2000; Barnes et al., 

2014; Littvay, 2012; Rijsdiik and Sham, 2002; Felson, 2014). With these additional assumptions 

scholars constructed calculations to estimate the amount of variance in the phenotype attributable 

to genetic and environmental factors.  

 Formula 3.20 and Formula 3.21 present the mathematical calculation used to estimate the 

correlation in phenotype for MZ and DZ twins. Notably, only the genetic	(ℎ0) and shared 

                                                
24 In the visual demonstration A represents the additive genetic effects, C represents the shared environmental 
effects, and E represents the non shared environmental effects.  
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environment	(v0)	are officially estimated within the formulas (all additional variance and error is 

attributable to the non shared environment, �0, in the final calculations; Plomin et al., 2013). 

Furthermore, the genetic correlation between individuals in the twin pairs are represented by the 

Ä(ℎ0), where MZ twins share 100 percent of their genes (1(ℎ0)) and DZ twins share 50 percent 

of their genetic material (. 5(ℎ0)).  

[Formula 3.20] 

 

ÄÉÑ = Ä(ℎ0) + v0	 

ÄÉÑ = 1(ℎ0) + v0	 

[Formula 3.21] 

ÄÖÑ = Ä(ℎ0) + v0	 

ÄÖÑ =. 5(ℎ0) + v0 

 

 By combining these formulas, the variance in the phenotype can be attributed to the 

variance in genetic and shared environmental factors (ℎ0	and	v0; Plomin et al., 2013). Formula 

3.22 presents the calculation for estimating the variance in a phenotype associated with the 

variance in genetic factors (ℎ0). ℎ0 can be estimated by subtracting the correlation in a 

phenotype between DZ twins (ÄrÑ) from the correlation in a phenotype for MZ twins	(ÄÉÑ) and 

multiplying that value by two. The multiplication of the final value by two accounts for the 

known difference in genetic relatedness of MZ and DZ twins. MZ twins are two times more 

genetically related than DZ twins (i.e., 100 percent genetic relatedness for MZ twins and 50 

percent genetic relatedness for DZ twins). Formula 3.23 demonstrates the calculation for 

estimating the variance in a phenotype associated with the variance in shared environmental 

factors (v0). v0 is estimated by multiplying the correlation in a phenotype between DZ twins 
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(ÄrÑ) by two and subtracting the correlation in a phenotype for MZ twins	(ÄÉÑ) from that value. 

Formula 3.24 presents the calculation for estimating the variance in a phenotype associated with 

the variance in non shared environmental factors (�0), which is calculated as 1 minus the 

variance in genetic factors (ℎ0) plus the variance in shared environmental factors (v0). This 

calculation allows any statistical or measurement error to be captured in the estimate for the non 

shared environment (Plomin et al., 2013). 

   

 

[Formula 3.22] 

ℎ0 = 	2(ÄÉÑ − ÄrÑ)	 

[Formula 3.23] 

v0 = 	2(ÄrÑ) − ÄÉÑ 

[Formula 3.24] 

�0 = 	1 − (ℎ0 + v0) 

 The ACE decomposition model is the foremost technique for identifying and estimating 

the influence of genetic factors and environmental factors on a phenotype or a treatment 

condition.25 In regards to biological self-selection, the ACE decomposition model can be 

estimated in combination with SSSMs to observe the disjunction between the variance explained 

by environmental factors between the two methodologies. Any substantive difference between 

the two terms (i.e., the �0 + v0	value for the ACE decomposition model and the Ä0 value for the 

SSSMs) would be suggestive of potential biological self-selection into a treatment condition and 

                                                
25 While the term treatment condition alludes to a predetermined treatment, in the current context any variable 
influencing phenotypic differences can be considered a treatment condition (e.g., intelligence, educational 
attainment, peer delinquency). 
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the differences between SSSMs and genetically sensitive methodologies, which will be discussed 

in subsequent subsections (Pinker, 2003). A disjunction commonly exists between these terms 

due to the estimation process of SSSMs, which is suggestive of the inability to account for 

genetic factors within the model. Generally, the estimation of an Ä0 value for the SSSMs 

captures all three components associated with a treatment condition (ℎ0 +	�0 + v0; Pinker, 

2003).  

 Empirical assessments employing the ACE decomposition model have directly 

demonstrated the disjunction between quantitative genetics and sociological research using 

SSSMs (e.g., Branigan, McCallum, and Freese, 2013; Delvin et al., 1997; Wright and Beaver, 

2005). One of the largest meta-analyses ever conducted further solidified the validity of the 

hypothesis that the majority of complex phenotypes are subjected to some genetic influence 

(Polderman et al., 2015). The majority of 17,804 traits examined had average heritability 

estimates that centered around .49. Furthermore, the average heritability estimate suggests that 

the employment of SSSMs might overestimate the effects of a treatment condition on antisocial 

behavior. Evidence suggests that the counterfactual established during standard social science 

analyses might not represent reality, where biological and social self-selection influences the 

probability of exposure to a treatment condition (Beaver, 2009; Plomin et al., 2013). Overall, the 

ACE decomposition model allows scholars to partially observe the degree to which biological 

self-selection could potentially alter the estimates associated with SSSMs (Pinker, 2003). 

 

3.3.2. MZ difference model 

Divergent from the ACE decomposition model, the MZ difference model is a common 

behavioral genetic technique designed to adjust estimates for the unobserved effects of biological 
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self-selection (Pike et al., 1996; Rovine, 1994; Rowe and Plomin, 1981).26 In the current context, 

biological self-selection refers to the process in which an individuals’ probability of exposure to 

a treatment condition is influenced by biological predisposition. As illustrated mathematically 

below, the MZ difference model adjusts for the unobserved effects of biological self-selection 

through reliance on Mendelian inheritance and genetic relatedness (Burt, McGue, and Iacono, 

2009; Pike et al., 1996). Unlike other kinship pairs, MZ twins share 100 percent of their genetic 

material, which results from the meiosis of a single zygote. Since it can be assumed that MZ 

twins share 100 percent of their genetic material, all phenotypic differences between MZ twins 

should result from differences in environmental factors (Asbury et al., 2003; Caspi et al., 2004). 

This can be represented by the Formula 3.25 and Formula 3.26.27 As demonstrated in Formula 

3.25, any phenotypic differences between MZ twins (∆âäã) is equal to the genetic differences 

(∆ℎäã) and the environmental differences (∆väã +	∆�äã). Accordingly, since MZ twins share 

100 percent of their genetic material, we can safely assume that the genetic difference between 

our MZ twins is equal to zero (∆ℎ0äã = 0; represented by Formula 3.26; Pike et al., 1996; 

Plomin 2011; Vitaro, Bredgen, and Arseneault, 2009). With this assumption in mind, the 

phenotypic differences between MZ twins (∆âäã) is equal to the shared (∆väã) and the non 

shared (∆�äã) environmental differences. In addition to the assumption that the genetic 

difference between our MZ twins is equal to zero (∆ℎäã = 0), scholars generally assume that 

any phenotypic differences (∆âäã) could be safely accounted for by differences in the non 

shared environment (∆�äã; Neale and Cardon, 2013; Vitaro et al., 2009). Notably, contained 

within the ∆�äã, are observed differences in the treatment condition (∆#$äã) and independent 

variables of interest (∆+äã).  

                                                
26 MZ difference model also adjust estimates for the unobserved effects of shared environment. 
27 In the current context, ∆ represents the difference between MZ twins for the specified term. 
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[Formula 3.25] 

∆âäã = ∆ℎäã +	∆väã +	∆�äã 

[Formula 3.26] 

∆ℎäã = 0	 

The divergence between MZ twins regarding a phenotype and the non shared 

environment can be calculated using the simple formulas presented below. As indicated by 

Formula 3.27, the discordance between MZ twins on a phenotype (∆âäã = âå. − âå0), the 

treatment condition (∆#$äã = #$å. − #$å0), or observed independent variables (∆+äã = +å. −

+å0) can be calculated by simply subtracting the score for twin two from the score for twin one.  

 

 [Formula 3.27] 

∆âäã = âå. − âå0 

 

To ensure unbiased estimates scholars often randomly assign the MZ twins the label of 

twin one or twin two (Nedelec, Park, Silver, 2016; Viding et al., 2009). The logic of MZ 

difference scores has led to the development of a variety of statistical estimation techniques 

adjusting for the influence of unobserved genetic confounders (Rovin, 1994). In addition to MZ 

discordance estimation provided in Formula 3.27 scholars can estimate MZ discordance through 

a residual gain score, a relative versus absolute difference score, a variance score, a fixed effects 

model, and various other techniques (Fujiwara and Kawachi, 2008; Rovin, 1994).  

As indicated below, the raw MZ difference scores can be introduced into basic regression 

models and adjust for the effect of the unobserved genetic confounders. Formula 3.28 presents 

the simple formula for a bivariate ordinary least squares (OLS) regression model. This formula 
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illustrates the assumption that scores on the dependent variable (!) are a function a vector of 

coefficients (,.), which is influenced by a  ç	é	_ matrix of independent variables (+/).28 As 

indicated by Formula 3.29, scholars can merely replace scores on the dependent variable (!/) and 

the independent variables (+/) with MZ difference scores to adjust for the effects of unobserved 

genetic and shared environment confounders. The dependent variable (!/) is now represented by 

MZ difference scores on the specified phenotype (∆âäã) and the independent variables (+/) is 

now represented by MZ difference scores on the treatment condition (∆#$.äã) and the specified 

independent variables (∆+0äã; Rovine, 1994). Consistent with the assumptions presented above, 

the genetic influence on the phenotype is assumed to be zero because ∆ℎäã = 0 (Neale and 

Cardon, 2013). Furthermore, it can be assumed that the shared environmental difference has zero 

influence on the estimations because ∆väã = 0. The same logic can be applied to binary logistic 

regression.  

 

 [Formula 3.28] 

! = ,- + ,.+./ 

[Formula 3.29] 

∆âäã 	= ,- + ,.∆#$.äã + ,0∆+0äã 

 

 As noted by scholars, the MZ difference score technique is the gold standard to adjust for 

the effects of biological self-selection in a statistical model (Vitaro et al., 2009). As demonstrated 

above, the MZ difference score technique allows scholars to assume that genetic predispositions 

are held constant within the statistical model. The MZ difference score establishes a natural 

                                                
28 m represents the number of columns (i.e., variables) within the dataset and i represents the 
number of rows (i.e., individuals) within the dataset.  
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counterfactual condition where only the differences on environmental conditions are examined 

for two genetically identical individuals. This means that any observed differences on an 

outcome of interest can only be attributable to the treatment condition, observed environmental 

conditions, and unobserved environmental conditions (and measurement error). Regarding 

biological self-selection, the beneficial nature of the MZ difference score technique is evident by 

the conservative statistical estimates produced within various statistical analyses (Turkheimer 

and Waldron, 2000). 

 MZ difference scores have been employed to empirically assess the association between a 

treatment condition and an outcome of interest when holding unobserved shared genetic and 

shared environmental factors constant. Generally, when compared to standard social science 

methodologies, MZ difference scores produce more conservative estimates (e.g., Asbury et al., 

2003; Beaver, 2008; Beaver, Vaugh, and DeLisi, 2013; Caspi et al., 2004; Pike et al., 1996). 

Evident by recent scholarship (e.g., Burt et al., 2009; Nedelec, Park and Silver, 2016; Nedelec, 

Richardson, and Silver, 2017; Nedelec et al., 2012), when adjusting for unobserved genetic 

factors scholars tend to demonstrate null associations between various treatment conditions and 

observed outcomes. These null associations generally support the suggestion that genetically 

sensitive methodologies approximate a true counterfactual condition more closely than standard 

social science methodologies (Plomin et al., 2013). The demonstration of a null association in a 

genetically sensitive model suggests that the treatment condition has limited influence on the 

observed outcome when biological predispositions are held constant (Pike et al., 1996). 

Furthermore, these findings suggest that a superior counterfactual can be established by 

accounting for the effects of biological self-selection.  

Although MZ difference method is one of the preeminent methodologies adjusting for 

genetic confounders in behavioral genetics, limitations associated with the technique persist 
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(Vitaro et al., 2009). The MZ difference score technique relies on a sample of MZ twins, which 

make up a limited portion of the general population. Critics (e.g., see Boardman and Fletcher, 

2015) have suggested the limited number of MZ twins within the general population could 

reduce the representativeness of statistical associations to non-twins (Barnes and Boutwell, 

2012). Furthermore, even though these critiques are unsubstantiated (see Barnes et al., 2014), a 

well-known limitation of the MZ difference score technique is the assumption that twin 

modeling techniques are underpowered . Specifically, sufficient variation in MZ difference 

scores and a sufficient sample size must be achieved prior to observing a statistically significant 

association between a phenotype (∆âäã/) and a treatment condition (∆#$äã/; Neale and Cardon, 

2013). With recent advancements in technology and the difficulties associated with MZ 

difference scores, scholars in behavioral genetics and molecular genetics have implemented 

various methodologies to estimate the effects of observed genetic factors on a treatment 

condition (Purcell et al., 2009). One innovative technique has allowed scholars to estimate the 

probability of exposure to a treatment condition with observed genetic variants (Evans, Visscher, 

and Wray, 2009). As demonstrated below, polygenic risk scores allow scholars to adjust for the 

influence of observed genetic variants by estimating and controlling for the effects of genetic loci 

(Evans et al., 2013).  

 

3.3.3. Polygenic risk scores 

 Similar to propensity scores, the polygenic risk score approach is a data reduction 

technique designed to aggregate the effects of multiple genetic alleles in an effort to examine or 

control for the effects of multiple variables within a single model. Briefly, exposure to a 

treatment condition can result from two distinct genetic mechanisms of biological self-selection: 

polygenic effects or dominant genetic effects (Purcell et al., 2009). In the current context, a 
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dominant genetic effect refers to the hypothesis that a single genetic locus influences the 

probability of exposure to the treatment condition. Furthermore, scholarship has consistently 

demonstrated that it can be safely assumed that the probability of exposure to treatment condition 

is generally a function of aggregated effects (Bush and Moore, 2012; Chabris et al., 2015). 

Notably, early genome wide association studies (GWAS) commonly isolated individual locus, 

creating an examination of dominant genetic, rather than polygenic effects (Hirschhorn and Daly, 

2005; McCarthy et al., 2008). In other words, GWAS examine the association between a single 

locus and a treatment condition, rather than the aggregate effects of multiple loci (Price et al., 

2006). To address this issue, scholars created polygenic risk scores, which account for the 

aggregated genetic effects of the whole genome on the observed variation in the treatment 

condition (Purcell et al., 2009).29 The estimation of a polygenic risk score is a three-step process 

requiring multiple GWA datasets.30  

 First, polygenic risk scores necessitate the estimation of a genome wide association on an 

independent dataset (Purcell et al., 2009). Specifically, if the GWA model and polygenic scores 

are estimated on the same sample, the polygenic scores will artificially amplify the estimated 

effects of specific locus on the treatment condition (Evans et al., 2009). Formula 3.30 

demonstrates the estimation of a GWA model for a single treatment condition (#$). As indicated 

by the formula, the treatment condition (#$) is a function of the vector of estimates (,/), a m x n 

matrix of genetic markers ((/) – otherwise known as loci – and error (�; Dudbridge, 2013). 

Captured within the error term is the influence of the non shared environment. Not evident by the 

formula above, GWA analysis uses an iterative estimation process, where the treatment condition 

                                                
29 While simplistically stated above, the technique requires scholars to specify the loci of interest. While some 
scholars have generated polygenic risk scores from only loci significantly associated with the phenotype of interest, 
evidence suggests that the inclusion of the whole genome provides a superior statistical control for the observed 
genetic effects (Dudbridge, 2013).  
30 While not common, polygenic scores can be estimated with a single dataset. 
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(#$) is regressed on genetic markers ((/) and mutations at each locus (m). The estimates for each 

locus (m) represent the association between the genetic markers ((/) and the treatment condition 

(#$), given the variation observed in the dataset (Purcell et al., 2009). Due to the iterative 

process, scholars are required to achieve significance levels well beyond the standard social 

science study (i.e., α < .05 x 10-5; Evans et al., 2013). An additional term (∑ ,/0(/ + )0ä
/B. ) can 

be introduced into the model to estimate the genetic correspondence between two phenotypic 

traits or a treatment condition and an outcome of interest (Dudbridge, 2013).  

 

[Formula 3.30] 

#$ =>,/(/ + �
ä

/B.

 

 

 Second, succeeding the estimation of a GWA model on an independent sample, the 

polygenic risk scores associated with a treatment condition can be estimated (Purcell et al., 

2009). Using the estimates (,K/) generated from the initial GWA model, scholars simply sum the 

weighted coefficients associated with each genetic marker (i.e., loci; Dudbridge, 2013). In other 

words, the vector of estimates from the independent sample (,K/) GWA model is multiplied by a 

m x n matrix of genetic alleles ((/) and summed (∑ ,K/(/ä
/B. ; Formula 3.31). When the effects are 

aggregated, a raw score representing the amount of variance in the treatment condition accounted 

for by observed genetic factors is created (Purcell et al., 2009). Again, Formula 3.31 represents 

the formula for estimating polygenic scores for a single trait, and the complexity of the 

estimation is greatly enhanced by the introduction of additional terms (Dudbridge, 2013).  
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[Formula 3.31] 

êë = >,K/(/
ä

/B.

 

  

 An alternative approach is to use the unweighted polygenic score. As indicated by 

Formula 3.32, the unweighted polygenic risk score is the aggregate effects of genetic markers 

(i.e., loci) without the presumption of a specified effect size or direction of association 

(Dudbridge, 2013). íìî(,K/) refers to the absolute value for the slope estimate divided by the true 

value for the slope estimate. The unweighted polygenic risk score technique can be considered 

more robust against various estimation errors (e.g., limited sample size, population 

heterogeneity), but the limitations outweigh the benefits (Palla and Dudbridge, 2015). 

Specifically, the unweighted polygenic risk scores have limited guidance from prior scholarship 

and could potentially overestimate the variance in the treatment condition predicted by each 

locus (Palla and Dudbridge, 2015). Overall, scholars are encouraged to compare the two 

estimation techniques, but the weighted technique is generally preferred (Dudbridge, 2013).  

[Formula 3.32] 

êë =>íìî(,K/)(/
ä

/B.

 

 

íìî(,K/.) = 	
|,K/|
,K/

 

   

Third, similar to MZ discordance scores polygenic risk scores are generally introduced 

into a statistical model as a predictor or statistical control. As indicated by Formula 3.33 and 



 54 

Formula 3.34, the polygenic risk score functions as a standard independent variable, where ! is 

regressed on ,.êë./. When introduced as a statistical control the polygenic risk score is calculated 

using the two-trait, rather than the one-trait, GWA estimation technique (Dudbridge, 2013).31 

The two-trait estimation technique allows scholars to estimate the genetic factors (i.e., shared 

polygenic factors) potentially accounting for the covariance between the dependent and 

independent variables of interest. As indicated by scholars (e.g., Middeldorp et al., 2011; Okbay 

et al., 2016; Plomin, 2013; Power et al., 2015), the introduction of polygenic scores into a 

statistical model should adjust for the observed genetic predispositions influencing the 

covariance between two environmental variables.  

 [Formula 3.33] 

!	 = ,- + ,.êë./ + ,0+0/ 

[Formula 3.34] 

 

log	(
!

1 − !) 		= ,- + ,.êë./ + ,0+0/ 

two statistical expectations are associated with polygenic scores. First, as outlined above, 

polygenic scores mathematically estimate exposure to the treatment condition given the observed 

genetic markers (,/(/; Evans et al., 2013). Predictably, this estimation technique removes any 

variation accounted for by the non shared environment or error (�; Evans et al., 2013). Second, 

since the polygenic scores are a function of a GWA model, they are often subjected to the effects 

of missing heritability (Plomin, 2013). The variance in a treatment condition explained by a 

polygenic score is generally lower than heritability estimates produced by ACE decomposition 

                                                
31 Please note that the two-trait estimation technique is only used when scholars want to control for the genetic 
covariance between two variables. Generally, it is acceptable to introduce a polygenic score estimated with the one-
trait estimation technique and other environmental variables when predicting outcomes of interest (Dudbridge, 
2013). 
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models (Plomin, 2013). To outline this effect, if an ACE decomposition model estimates an 	ℎ0 = 

.60, but a GWAS estimates an	Ä0 = .10, the polygenic scores will only predict 10 percent of the 

variance in the treatment condition of interest (Plomin, 2013). As sample sizes increase, the 

amount of missing heritability in polygenic scores should approach (Dudbridge, 2013; Chatterjee 

et al., 2013; Dudbridge, 2013). As noted by various scholars (e.g., Dudbridge, 2013; Plomin, 

2013; Purcell et al., 2009), variance explained by polygenic scores is a function of statistical 

power of the sample. Samples with limited statistical power will explain less variance in the 

treatment condition than samples with adequate statistical power, which is generally determined 

through a power analysis (Cohen, 1992).  

Due to their recent development, polygenic risk scores have generally been implemented 

as a covariate in various regression analyses (Domingue et al., 2016; Hamshere et al., 2011). 

Polygenic risk scores have either been the primary independent variable or a statistical control 

when assessing the predictors of an outcome of interest (Domingue et al., 2016; Dominque et al., 

2018; Hamshere et al., 2011; Lori et al., 2017; Trotta et al., 2017). When regarding biological 

self-selection, the latter technique is more common. Specifically, an outcome of interest is 

regressed on a treatment condition while controlling for the effects of the polygenic risk score. 

Generally, when employed as a statistical control, more conservative estimates of the association 

between a treatment condition and an observed outcome are produced (Agerbo et al., 2015; 

Derks et al., 2012; French et al., 2015; Jansen et al., 2018). Due to data limitations scholars have 

not employed polygenic risk scores as statistical controls to examine the causal effects of 

intelligence or educational attainment on future antisocial behavior.  

Remarkably, while polygenic risk scores represent the most recent advancements in 

genetically sensitive methodologies, contemporary scholarship employing polygenic risk scores 

as a covariate in a statistical control model cannot adjust for biological self-selection. 
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Specifically, this model cannot establish a counterfactual condition where the polygenic score 

remains constant at varying levels of exposure to the treatment condition. To address this 

limitation, a counterfactual condition – that adjusts for biological self-selection – can be 

established by matching participants on the polygenic risk score. The polygenic risk score must 

remain balanced at varying levels of exposure to the treatment condition.32 In theory, post-

matching analyses should produce estimates similar to that of an MZ discordance model because 

the influence of biological predispositions on the outcome of interest should be equal to zero. 

Nevertheless, matching participants on polygenic risk scores only adjusts for the influence of 

observed genetic factors on the treatment condition. To establish a more precise counterfactual 

condition, theory dictates that all biological and environmental factors should be held constant at 

varying levels of exposure to the treatment condition (Lewis, 1979). Although difficult to 

achieve, genetically adjusted propensity score matching (GAPSM) could approximate the true 

counterfactual more accurately than the methodologies reviewed by matching participants on the 

observed genetic and observed environmental predictors of a treatment condition.  

 

3.4. Genetically Adjusted Propensity Scores (GAPS) 

 To review, the primary focus of the current chapter was to establish a comprehensive 

understanding of the statistical methodologies employed to adjust for the effects of self-selection. 

Self-selection, the process in which an individual’s predispositions increase or decrease the 

probability of exposure to a treatment condition and an outcome of interest, is the primary factor 

limiting the ability of social scientists during assessments of causality. While the term “treatment 

condition” alludes to a predetermined treatment, in the current context any variable influencing 

phenotypic differences can be considered a treatment condition (e.g., intelligence, educational 

                                                
32 Balance, or common support, the necessity to maintain an equivalent distribution of scores (on a variable of 
interest) at different levels of the treatment condition. 
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attainment, peer delinquency). Self-selection limits our ability to establish causality by 

introducing non-random error into the statistical models, which in-turn increases the probability 

of observing a spurious association between the treatment condition and the outcome of interest. 

Other than random assignment (i.e., a true experiment) scholars can eliminate the effects of self-

selection by holding the observed and unobserved genetic and environmental conditions 

constant. Stated differently, a causal association between the treatment condition and the 

outcome of interest can only be achieved by establishing the perfect counterfactual condition. 

Predictably, this is extremely difficult to accomplish in the social sciences.  

 The purpose of the current dissertation is to advance beyond contemporary statistical 

techniques and develop the capacity to construct estimates nearly uninfluenced by the effects of 

observed confounding variables. As noted in prior sections, only a limited body of scholarship in 

the social sciences can adjust for the effects of self-selection through the implementation of 

random assignment (Shadish et al., 2002; Singelton and Straits, 2010), which is an unavoidable 

consequence of the complexity social science research questions. For all other scholarship, I 

suggest genetically adjusted propensity score matching (GAPSM), which is a technique designed 

to obtain estimates virtually uninfluenced by the effects of observed genetic and observed 

environmental factors on self-selection. The superiority of this technique is highly dependent 

upon the observed environmental conditions.  

If only demographic characteristics (e.g., race, gender, and age) and shared 

environmental variables (e.g., parent income, parent education, and childhood living situation) 

are available, then estimates similar to those of MZ difference scores should be produced. If the 

available data possesses additional environmental conditions (e.g., peer groups, previous 

behavioral measures, dietary habits, etc.) then GAPSM should provide estimates more 

conservative than MZ difference scores. Consistent with other statisticians (e.g., Fox, 2016), 
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theory and available data should heavily influence the employment of a statistical technique to 

examine a specified research question. GAPSM estimates and adjusts for the effects of observed 

genetic and environmental factors through the aggregation of propensity scores and polygenic 

risk scores into a single estimate (referred to as a genetically adjusted propensity score). As 

indicated in previous subsections, propensity scores adjust for the observed environmental 

predictors and polygenic risk scores adjust for the observed genetic predictors. The combination 

of propensity scores and polygenic risk scores should allow scholars to approach causality 

beyond the techniques identified above by controlling for both observed genetic and observed 

environmental predictors of the treatment condition.  

3.4.1. Estimating genetically adjusted propensity scores (GAPS) 

As outlined below, the primary distinction between propensity scores and genetically 

adjusted propensity scores (GAPS) is the inclusion of a genetic risk variable (i.e., polygenic risk 

score) during the estimation of the propensity score. The estimation process for a GAPS can be 

outlined in two steps. First, scholars are required to estimate a polygenic risk score using the 

method described in subsection 3.3.3. In the current context, the polygenic risk score should be 

estimated using the one-trait model (e.g., the treatment condition estimation technique), where 

the treatment condition (TC) is regressed on the observed genetic alleles as presented in Formula 

3.35.  

[Formula 3.35] 

#$,= ,ï( + ) = (>,/.(/ + ).
ä

/B.

) 

 

A polygenic risk score is estimated using coefficients (,K.) from an independent GWA, 

where the treatment condition (TC) was regressed on the observed genetic alleles and an m x n 
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matrix of genetic loci ((/; Formula 3.36). Every cell of the genetic matrix ((./) represents the 

alleles associated with an individual at a specified genetic locus. Overall, the polygenic risk score 

represents an individual’s observed genetic susceptibility to exposure to the treatment condition. 

Scholars generally standardize the raw scores on a z distribution, which is presented in Formula 

3.37. The z standardization of the polygenic score is equal to the raw score of an individual (ê/) 

minus the mean of the distribution (ê̅) divided by the standard deviation of the distribution (í). 

 

[Formula 3.36] 

êë =>,K.(/
ä

/B.

 

[Formula 3.37] 

&Qó =
ê/ − ê̅
í  

 

 

Second, two methods exist for combining a polygenic risk score with a propensity score. 

The first method estimates the propensity score with the polygenic score as a predictor of the 

treatment condition. The polygenic score and any observed environmental covariates would be 

introduced into a regression model. This technique requires the standardization of the raw 

polygenic scores on a z distribution and produces GAPS estimates for the entire sample. 

Although only two estimation techniques (one for a dichotomous treatment condition and one for 

a continuous treatment condition) are reviewed below, polygenic scores can be introduced into 

any statistical method designed to estimate propensity scores.  

The dependent variable in the regression analysis represents the treatment condition (TC) 

and the symbol ò represents the GAPS. Consistent with contemporary knowledge, binary logistic 
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regression is the primary technique used for estimating the predicted probabilities associated 

with dichotomous treatment conditions. As outlined by Formula 3.38, the log odds of the 

treatment condition (log	( ap
.6ap

)) is regressed on the standardized polygenic score (&Q./) and any 

observed environmental conditions (+0/ −	+9/). Succeeding the estimation, the odds associated 

with standardized polygenic scores (&Q./) and observed environmental conditions (+0/ −	+9/) 

are summed and exponentiated to estimate GAPS (Formula 3.39). This method allows the newly 

estimated GAPS to approximate the influence of observed genetic and observed environmental 

factors on the treatment condition. A similar estimation technique is employed with continuous 

outcome variables.  

 [Formula 3.38] 

log P
#$

1 − #$R 	= ,- + ,.&Q./ + ,0+0/ + ,9+9/ 

[Formula 3.39] 

 

ò =>[1 + exp( ,- + ,.&Q./ + ,0+0/ + ,9+9/)]
A

/B.

 

 

To review, Formula 3.40 and Formula 3.41 present the estimation of propensity scores 

for continuous treatment conditions. The only difference in the estimation of a propensity score 

for a continuous treatment condition and a GAPS for a continuous treatment condition is the 

replacement of one independent variable (+./) with the standardized polygenic score (&Q./) in 

formulas 3.40 and 3.41. As indicated by the formulas, the polygenic score is introduced as an 

independent variable and does not require the further complication of advanced statistical 

models. Furthermore, the GAPS produced by the two estimation techniques will structurally 
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mimic that of a propensity scores (i.e., a normal distribution of effects ranging between .00 and 

1.00, where more extreme values are observed less often), but adjust for both the observed 

genetic and environmental factors influencing the treatment condition. To reiterate, scholars can 

employ ordinal regression models, multi-level models, and longitudinal models to estimate a 

GAPS. The only requirement is the introduction of a polygenic score into the regression model.  

 

[Formula 3.40] 

g(TC/)|X/	~F(,- + ,.&Q./ + ,0+0/ + ,9+9/, G
0) 

 

[Formula 3.41] 

UK/ =
1

√2NGO0
�éâ P−

1
√2GO0

(g(TC/) − ,- + ,.&Q./ + ,0+0/ + ,9+9/)
0R 

 

 The second method, which requires the normalization of the raw polygenic scores 

(indicated by Formula 3.42), involves the independent estimation of the polygenic score and the 

propensity score. In the current context, independent estimation refers to the process where the 

propensity scores are estimated without the polygenic score as an independent variable. Scholars 

can independently estimate the propensity scores using binary logistic regression models, 

negative binomial regression model, ordinal regression models, and several alternative 

probability-based estimation techniques. The independent estimation method requires the 

treatment condition to be dichotomous or categorical, given the simultaneous estimation of 

balance and matching associated with generalized propensity scores. 

 Formula 3.42 is the method employed to normalize the raw polygenic score between 0 

and 1. FQ indicates the normalized polygenic score, while ê/ and êë represent the score of an 

individual and the entire distribution of the polygenic score respectively. The normalization of 



 62 

the polygenic score is required to ensure that the independently estimated polygenic risk score 

and propensity score are restricted to the same scale.  

[Formula 3.42] 

FQ =
ê/ − min	(êë)

max( êë) − min	(êë)
 

 

 

 Post-normalization, the polygenic score and propensity score can be combined using the 

formula presented below. In Formula 3.43, the GAPS is represented by the symbol ò, which is 

equal to the addition of the weighted normalized polygenic score (FQë ∗ êëhú) and the weighted 

propensity score (= ∗ u1 − êëhúz). The polygenic score and propensity score are weighted by the 

variance in the treatment condition explained (êëhú) and not explained (1 − êëhú) by genetic 

factors, respectively. The weights permit scholars to theoretically and empirically vary the 

influence of genetic and environmental factors during the establishment of the GAPS. 

Furthermore, the weights ensure that the GAPS structurally mimics the normalized polygenic 

risk score (FQë) and the propensity score (=). Due to the independent estimation of the polygenic 

score and propensity score, all covariance between the two terms must be removed ùvwx(ûü†),(m)°.  

[Formula 3.43] 

ò = (FQë ∗ êëhú) + ù= ∗ u1 − êëhúz° − ùvwx(ûü†),(m)° 

 

The calculation above produces GAPS, which approximates the influence of the observed 

genetic factors and the observed environmental factors on the treatment condition. While similar 

to the propensity score estimated with the polygenic risk score as a predictor, an important 

distinction between the two calculations does exist. The independent estimation method ensures 
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that an empirically valid quantity of variance in the treatment condition is attributed to 

environmental factors, despite the inability to quantify every environmental predictor. To state 

differently, the second method allows scholars to ensure that the environment is represented in 

the estimation of the GAPS.  

3.4.2. Assumptions of genetically adjusted propensity scores (GAPS) 

 There are three assumptions associated with GAPS. First, the GAPS method assumes that 

the polygenic risk score is not associated with any environmental variance (ò(v + �) = 	0). 

Reliably, this assumption is satisfied with the mathematical estimation of the polygenic risk 

score (Dudbridge, 2013). Specifically, since the variance in the treatment condition associated 

with the environment does not contribute to the estimation of a polygenic risk score it can be 

safely assumed that the polygenic risk score is not associated with any environmental variance 

(Dudbridge, 2013). Second, both methods described above assume that the polygenic risk score 

was estimated with the same treatment condition as the propensity score (ò(¢) = 	=(¢)). This 

assumption should be closely monitored, as the scale of the treatment condition cannot vary 

between the estimation of the polygenic risk score and the propensity score. Third, regarding the 

second method, the independent estimation of the polygenic score and the propensity score, it is 

assumed that the propensity score contains some variance attributed to genetic factors (=(ℎ0) ≠

0). Without assuming that the propensity score contains some variance attributed to genetic 

factors, the method would not necessitate the weights or the removal of covariance between the 

two terms. These three assumptions should be examined prior to the estimation of GAPS. It 

should be noted that additional assumptions need to be satisfied when introducing the polygenic 

score into any regression model (e.g., linearity; Fox, 2016). 
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3.4.3. Genetically adjusted propensity score matching (GAPSM) 

Consistent with contemporary scholarship (e.g., Guo and Fraser, 2015), the superior post-

estimation technique for GAPS is matching. While other post-estimation techniques do exist 

(e.g., the introduction of GAPS into a regression model as a control variable), they are 

comparable to the estimation of a regression model with both genetic and environmental 

controls.33 If those estimations are desired, MZ difference scores should provide estimates 

consistent with GAPS. If not, genetically adjusted propensity score matching (GAPSM) should 

provide a superior technique adjusting for the effects of the observed genetic predictors and the 

observed environmental predictors of the treatment condition.34  

To reiterate, matching in any form is a method designed to reduce a larger sample into a 

subsample of similar individuals. In the current context, participants are matched on a score (i.e., 

GAPS) approximating the genetic and environmental predictors of the treatment condition. 

Succeeding matching, the subsample of individuals should be similar on all the observed genetic 

and environmental predictors but vary when considering the treatment condition (Morgan and 

Winship, 2015). The variation in treatment condition contained within the subsample of 

individuals is dependent upon the level of measurement associated with the treatment condition. 

Once the subsample is generated, the individuals are compared to observe any phenotypic 

differences. Theoretically, only variance in the exposure to the treatment condition should 

account for the phenotypic differences observed at varying levels of exposure to the treatment 

condition (i.e., genetic predictors and environmental predictors are held constant; Shadish et al., 

2002). In an empirical sense, this assumption can only be satisfied with random exposure to the 

treatment condition (Shadish et al., 2002). Considering the social sciences, GAPSM method 

provides an adjustment for phenotypic variance unaccounted for by the constituent processes 

                                                
33 A regression based approach can establish a counterfactual condition when all of the assumptions are satisfied. 
34 The validity of this claim is assessed in chapters five and six. 
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upon which it is based. The observed genetic and environmental confounders, which are adjusted 

for by GAPSM, should have no influence of the observed phenotypic differences at varying 

levels of exposure to the treatment condition.  

Consistent with contemporary scholars, participants can be matched on the GAPS using 

various techniques (e.g., Mahalanobis metric matching, nearest neighbor matching, nearest 

neighbor matching within a caliper, optimal matching, genetic matching, among others; Guo and 

Fraser, 2015). It should be noted that the assumptions associated with PSM (i.e., balancing and 

common support) must be satisfied when employing GAPSM. To specify, the smallest possible 

differences, generally determined by comparing distributions of key covariates, between matched 

participants must exist when examining their correspondence on the polygenic score and the 

environmental covariates. Furthermore, the matched subsample should have superior balance 

when compared to the unmatched sample, which is generally determined through an examination 

of the distribution differences for the polygenic score and the environmental covariates between 

the treatment and control cases. If optimal balance cannot be achieved, prior scholarship has 

suggested recoding variables from continuous to semi-continuous measures (Guo and Fraser, 

2015). Notably, since the polygenic score is normalized for the independent estimation method, 

the polygenic scores should not be transformed when using the independent estimation method. 

For the estimation of the propensity score with the polygenic score as a covariate, it is generally 

recommended for scholars to standardize or normalize the variable (Dudbridge, 2013). Overall, 

scholars using GAPSM should examine multiple matching techniques to ensure that the 

identified subsample achieves balance and common support regarding the polygenic score and 

the environmental covariates. 

 Succeeding GAPSM, scholars can employ post-matching statistical techniques to 

examine the association between the treatment condition and the outcome of interest. The most 
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common post-matching techniques used to examine the association between the treatment 

condition and the outcome of interest is a standard independent samples t-test or ANOVA. These 

post-matching techniques compare the correspondence between the differences in the outcome of 

interest when exposure to the treatment condition is contained on a dichotomous or semi-

continuous scale. For a continuous treatment condition, scholars suggest estimating a bivariate 

regression model, where the outcome of interest is regressed on the treatment condition (Guo and 

Fraser, 2015). These analyses should be estimated on the subsample of similar individuals 

determined by the GAPSM. The current study provides a four-part examination of self-selection 

through a demonstration of how contemporary statistical techniques (i.e., SSSMs and 

quantitative genetic methodologies) estimate a counterfactual condition and the divergences 

between those approaches and the newly developed GAPSM procedure. 

  



 67 

CHAPTER 4: THE CURRENT STUDY 

 As with much of the social sciences, modern criminology suffers from the general 

inability to establish causal associations between two variables. The inability to estimate causal 

associations is primarily a function of the reliance on non-experimental designs, which inhibits 

the approximation of a counterfactual condition. Nevertheless, the effects of non-experimental 

designs on the estimation of causality can be partially addressed by the implementation of 

advanced statistical techniques. However, these techniques (as illustrated in the discussions in 

prior chapters) suffer from their own limitations. To address these limitations the current study 

proposes a new statistical technique labeled genetically adjusted propensity score matching 

(GAPSM). GAPSM generates a counterfactual condition adjusting for both the observed genetic 

and the observed environmental factors associated with the probability of exposure to the 

treatment condition. In theory, the counterfactual condition created by GAPSM should hold all 

observed genetic and observed environmental factors constant at varying levels of exposure to 

the treatment condition. The genetically adjusted propensity score (GAPS) is estimated by 

combining polygenic risk scores with propensity scores through one of two statistical estimation 

techniques: combined or independent estimation.  

 To test the validity of the GAPSM technique, the current study addresses two 

independent research questions, (1) What is the causal effect of intelligence on future antisocial 

behavior? and (2) What is the causal effect of educational attainment on future antisocial 

behavior? The current study is demarcated into four distinct analyses.  

 First, linear regression analyses and ACE decomposition analyses will be 

conducted to provide an illustration of the effects of social self-selection and biological self-

selection on exposure to varying levels of intelligence and educational attainment. Furthermore, 

a baseline model using the statistical control method will be estimated. Second, propensity score 
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matching (PSM) will be used to adjust for the influence of observed social factors on an 

individuals’ exposure to the treatment conditions (intelligence and educational attainment). 

Subsequently, the association between the two independent variables and antisocial behavior will 

be estimated on the matched sample. Third, MZ difference scores will be used to adjust for the 

potential unobserved biological factors influencing an individuals’ exposure to the treatment 

conditions. Similar to the PSM analysis, the twin difference score on antisocial behavior will be 

regressed on the twin difference scores for intelligence and educational attainment (in separate 

models). Finally, a proof of concept simulation analysis will be conducted, where post-GAPSM 

estimates are compared to post-MZ difference estimates and unconfounded post-PSM estimates 

to evaluate the relative proximity to a true point estimate (1.00). The results of which should 

demonstrate the conditions in which, the GAPSM technique approaches the true point estimate 

closer than the preexisting methodologies. Furthermore, these analyses should demonstrate the 

divergences between the counterfactual conditions when adjusting for biological self-selection, 

social self-selection, or both biological and social self-selection. The first three analyses will be 

estimated using the National Longitudinal Study of Adolescent to Adult Health (Add Health) and 

the final analysis will be estimated using data simulated from the Add Health.35 The current 

study represents the first analysis estimating the causal effects between two variables using 

GAPSM.  

                                                
35 The simulation data is necessary because contemporary data collection techniques do not meet the data 
requirements associated with the GAPSM technique. Specifically, the GAPSM technique requires a large sample 
size (for both the estimation of polygenic score and the GAPSM), genome wide association data, and an extensive 
survey of environmental conditions to adjust for all potential factors influencing self-selection into a treatment 
condition. Notably, while the Add Health has yet to release their genome wide association data, it can be speculated 
that the first dataset satisfying the data requirements of the GAPSM technique will be the Add Health. 
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CHAPTER 5: METHODS 

5.1. National Longitudinal Study of Adolescent to Adult Health 

 The data for the current dissertation was derived from the restricted version of the 

National Longitudinal Study of Adolescent to Adult Health (Add Health; Harris et al., 2009). As 

publicized, the Add Health study was designed to prospectively examine the ecology of a 

nationally representative sample of American adolescents between 7th and 12th grade. Although 

initial contact with participants were made between 7th and 12th grade, the three follow-up waves 

conducted by the Add Health research team spanned 14 years. The array of information collected 

during the Add Health study has provided numerous empirical avenues to examine sociological, 

biological, and economic issues within contemporary society. To ensure the national 

representativeness of the study, the Add Health research team used a cluster sampling design, 

based upon the implicit stratification of high schools within the United States. See Harris et al., 

(2009) and Harris, Halpren, Smolen, and Haberstick (2006), for a more detailed description of 

the sampling design.  

 The Add Health research team set out to examine of the ecology of American adolescents 

through the employment of two surveys: in-school questionnaire and the in-home questionnaire. 

The in-school questionnaire, which was a 60-minute self-administered questionnaire, was 

distributed to all the students within the selected high schools on a given day. Approximately, 

90,000 students completed the in-school questionnaire. In addition to the in-school questionnaire, 

a random sample of students, within the selected high schools, stratified by grade and sex were 

selected to complete the in-home questionnaire (Harris et al., 2009). Overall 20,745 students 

were selected to participate in the in-home questionnaire, approximately 200 students (17 in each 

stratum) were selected from the 80 pairs of schools. The Add Health research team oversampled 

individuals based upon ethnic characteristics, saturation, disabled, and genetic characteristics. 
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For instance, siblings, dizygotic (i.e., fraternal twins) and monozygotic (i.e., identical twins) 

were oversampled.  

 The in-home questionnaires for Wave I of the Add Health were conducted between April 

and December of 1995. The in-home questionnaire was semi self-administered, where the 

interviewer read the question aloud and the participant responded on a laptop computer. 

Generally, the interview lasted 90 minutes long and covered a broad array of topics ranging from 

health status to involvement with delinquent activity. In addition to interviewing the students, the 

Add Health research team administered parental questionnaires to the resident mother or resident 

father. These questionnaires were designed to measure household characteristics, inheritable 

health conditions, and the relationship between the parent and the participant. In total, 17,670 

parents were interviewed.  

 After completing the Wave I interview, the Add Health research team waited 

approximately 6 months to begin Wave II. Wave II questionnaires were administered 

approximately 1 year after the participant completed the Wave I interview. At Wave II only in-

home questionnaires were administered to approximately 15,000 of the 20,745 individuals that 

completed the Wave I questionnaire. Notably, respondents within the 12th grade at Wave I and 

not part of the genetic oversampling were not approached to participate in Wave II. The Wave III 

in-home questionnaire was administered between August 2001 and April 2002. Of the 20,745 

individuals who participated in Wave I, 15,170 completed the Wave III in-home interviews. Due 

to the aging of the participants, the in-home questionnaire was restructured to account for the 

lifestyle of young adults. Specifically, topics such as participant relationship status, marital 

status, childbearing, educational attainment, and intelligence were introduced during the Wave 

III interview. Similar to Wave I, the Wave III in-home questionnaire was approximately 90 

minutes long and was administered as a guided interview.  
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 Wave IV, which was administered in 2008, collected information from 15,701 of the 

Wave I participants. Corresponding with Wave III, an updated survey instrument was developed 

to capture factors common within young adulthood. In addition to the phenotypes captured 

within the Wave I interview, the participants, now between the ages of 24 and 32, were asked 

about their roles and responsibilities as an adult, their physical and mental health status, and their 

overall adjustment into adulthood (Harris et al., 2009). Furthermore, personality characteristics, 

memory tasks, and a supplemental measure of oral vocabulary were administered.  

5.1.1. The added value of the Add Health when comparing twin difference scores to PSM  

 The four waves of data collected during the Add Health study provide a wealth of 

information for any scholar interested in the biological and sociological predictors of phenotypic 

variance. Germane to the current dissertation, the Add Health study represents an advantageous 

dataset for studying genetic and sociological self-selection. Specifically, the Add Health contains 

at least three waves of data where robust measures of environmental, psychological, and 

phenotypic information was collected from participants (Beaver et al., 2009; Harris et al., 2009; 

Miller, Barnes, and Beaver, 2011). Furthermore, the Add Health allows scholars to establish 

temporal ordering during assessments of self-selection (Singleton and Straits, 2010). 

Specifically, the first time-period is used to measure the participants’ characteristics that increase 

or decrease the probability of exposure to the treatment condition. The second time-period is 

used to operationalize the level of exposure each participant had to the treatment condition. The 

third time-period is used to measure phenotypic outcomes potentially associated with exposure to 

the treatment condition. In addition to the establishment of temporal ordering, the oversampling 

of genetically related individuals provides the ideal condition for assessing the correspondence in 

point estimates between genetically sensitive methodologies and SSSMs on a nationally 

representative sample (Nedelec and Beaver, 2014; Nedelec, Park, and Silver, 2017). Precisely, 
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the Add Heath dataset is nationally representative and has a subsample of genetically related 

individuals.  

5.1.2. The external validity of the twin subsample 

Concerns regarding the generalizability of the Add Health twin subsample have generally 

appeared in genetically sensitive publications or critiques of genetically sensitive methodologies 

(see Barnes et al., 2014). While plausible, various statistical techniques can be used to 

demonstrate the degree to which the twin subsample differs from the full sample. Consistent with 

contemporary publications (e.g., Nedelec et al., 2017), the most-often employed test for 

examining the similarities between the twin subsample and the full sample is an independent 

samples t-test. As such, Appendix C presents three sets of t-tests and the standardized difference 

(ZD) value comparing the mean scores of the MZ twins on the covariates to the mean scores of 

the full sample. Furthermore, the mean scores for the MZ and same sex DZ twins and MZ and 

difference sex DZ twins on the covariates were compared to the mean scores for the full sample. 

The results demonstrate that there are a limited number of statistically significant differences 

between the MZ twin sample and the full sample (7 of 17 differences were statistically 

significant at p < .05), MZ and same sex DZ twin sample and the full sample (8 of 17 differences 

were statistically significant at p < .05), and the MZ and difference sex DZ twin sample and the 

full sample (9 of 17 differences were statistically significant at p < .05). Additionally, across all 

comparisons the standard difference was never larger than .207 (parental education), suggesting 

that the statistical significance of the differences could be a function of the large N size. 

Furthermore, while statistically significant, the magnitude of the largest difference suggests that 

minimal substantive differences exist between the twin subsample and the full sample.  

5.2. Studies 1-3: Examining Self-Selection with Preexisting Methodologies 
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As highlighted in previous chapters, studies 1, 2, and 3 are designed to explore the 

potential existence of and adjust for the effects of self-selection using preexisting methodologies 

common within criminology. Furthermore, distinct from Study 4, studies 1, 2, and 3 examine the 

effects of self-selection on the association between intelligence and antisocial behavior as well as 

educational attainment and antisocial behavior using data from the restricted use version of the 

Add Health.  

To provide further distinctions, Study 1 illustrates the existence of self-selection by 

providing a three-part examination of intelligence and educational attainment, and the 

association between the treatment conditions (i.e., intelligence and educational attainment) and 

subsequent antisocial behavior. First, Study 1 provides the bivariate and multivariate association 

between intelligence and antisocial behavior, and educational attainment and antisocial behavior 

to observe the point estimate confounded by self-selection (i.e., the multivariate model only 

controls for social factors). Second, SSSMs are used to demonstrate that social factors predict 

exposure to the two treatment conditions. Finally, an ACE decomposition model is used to 

demonstrate that a proportion of the variance in the two variables are attributable to genetic 

factors.  

Study 2 is designed to demonstrate the validity of using various iterations of propensity 

score matching (PSM) when adjusting for the potential effects of social self-selection. As 

stipulated, the process of conducting a PSM analysis, such as pre-matching comparisons, 

achieving balance, adjusting caliper, and post-matching comparisons were completed to ensure 

that the derived point estimates from the post-matching bivariate analyses are theoretically 

superior to the bivariate point estimates confounded by self-selection. Study 3 is intended to 

demonstrate the validity of the MZ difference methodology when adjusting for the potential 

effects of genetic self-selection. As required, the process of conducting a MZ difference analysis, 
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such as cross twin correlations and cross-twin differences were completed to ensure that the 

derived point estimates from the post-matching bivariate and multivariate analyses are 

theoretically superior to the bivariate and multivariate point estimates confounded by genetic 

self-selection. Overall, in addition to demonstrating the validity and the efficacy of the 

preexisting methodologies, studies 1, 2, and 3 are designed to highlight the methodological gaps 

in adjusting for the effects of self-selection to set up the proof of concept simulation analysis 

provided by Study 4. 

5.2.1. Analytical samples36 

 5.2.1.1. Analytical Sample 1: Full Sample  

Derived from the restricted use version of the Add Health, a three-step process was used 

to generate the analytical sample for the standard social science analysis. It should be noted that 

when obtaining the Add Health restricted use dataset four separate files were provided, each one 

corresponding to each of the waves associated with the Add Health Study (i.e., Wave I, Wave II, 

Wave III, Wave IV). First, the data files corresponding to Wave I, Wave III, and Wave IV were 

merged together using the ID number provided by the Add Health research team. As noted 

within the subsequent subsection, the dependent variables were derived from Wave IV, the 

treatment condition variables were derived from Wave III, and the covariates (i.e., factors that 

predicted exposure to the treatment conditions) were derived from Wave I. Second, individuals 

who participated in Wave I of the Add Health but not Wave III were removed from the sample 

(N = 5,548). Third, listwise deletion was used to account for missing data on any of the measures 

of interest. Overall, the three-step process yielded three analytical samples ranging in size from 

6,233 to 12,898. 

                                                
36 The analytical samples are presented in the order of largest sample to smallest sample and the order does not 
correspond to the studies in which they are used.  
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 5.2.1.2. Analytical Sample 2: MZ and Different Sex DZ twin Subsample  

Corresponding with the process outlined above, a three-step strategy was employed to 

develop the second analytical sample (MZ and different sex DZ twin subsample) from the 

genetic subsample within the restricted use version of the Add Health. First, all the respondents 

missing data corresponding to the genetic subsample were dropped. This step isolated known 

kinship pairs from general participants. Second, Wave I, Wave III, Wave IV data for the 

monozygotic and different sex dizygotic kinship pairs were merged together, where each case 

corresponded to a kinship pair (i.e., each row in the new dataset contained information on both 

twins)37. This creates a long file where data corresponding to twin 1 precedes data corresponding 

to twin 2 (i.e., a row represents a twin pair).38 Furthermore, through this process the kinship pair 

– rather than the individual – becomes the unit of analysis. Finally, due to the need to identify 

kinship pairs, all participants without a family identification number were dropped from the 

analytical sample. Overall, the three-step process yielded a MZ and different sex DZ twin 

subsample with approximately 1,461 individuals. 

5.2.1.3. Analytical Sample 3: MZ and Same Sex DZ Subsample  

The same four-step strategy was employed to develop the third analytical sample (MZ 

and same sex DZ twin subsample) from the genetic subsample within the restricted use version 

of the Add Health. The only difference between the two subsamples are the exclusion of 

different sex dizygotic kinship pairs. Overall, the four-step process yielded a same sex MZ/DZ 

twin subsample with approximately 1,047 individuals. 

5.2.1.3. Analytical Sample 4: MZ Subsample  

                                                
37 Please see Plomin et al., for a detailed explanation of why this step is important for analyzing the influence of 
genetic (h2), shared (c2), and non shared environment (e2) influence on phenotypic variance.  
38 Step two resulted in dropping all kinship pairs that weren’t MZ or DZ twins 
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A three-step strategy was employed to develop the fourth analytical sample (MZ twin 

subsample) from the genetic subsample within the restricted use version of the Add Health. First, 

all the respondents missing data corresponding to the genetic subsample were dropped. This step 

isolated known kinship pairs from general participants. Second, Wave I, Wave III, Wave IV data 

for the monozygotic kinship pairs were merged together, where each case corresponded to a 

kinship pair (i.e., each row in the new dataset contained information on both twins). This creates 

a long file where data corresponding to twin 1 precedes data corresponding to twin 2 (i.e., a row 

represents a twin pair). Furthermore, through this process the kinship pair – rather than the 

individual – becomes the unit of analysis. Finally, due to the need to identify MZ kinship pairs, 

all participants without a family identification number were dropped from the analytical sample. 

Overall, the four-step process yielded a MZ twin subsample with approximately 570 individuals 

and 282 twin pairs. 

5.2.2. Measures39 

 5.2.2.1. Dependent Variables  

 Two dependent variables were created for the current study: Delinquency (Wave IV) and 

Drug Use (Wave IV). Delinquency at Wave IV was measured as the mean score on eleven items 

(five items had to have valid values) capturing self-reported involvement in minor and serious 

delinquent activities. Items such as “In the past 12 months, how often did you go deliberately 

damage property that didn’t belong to you?” and “In the past 12 months, how often did you use 

or threaten to use a weapon to get something from someone?” were included in this measure. 

Scores on the eleven items were subjected to a reliability analysis, which indicated a moderately 

high level of reliability (a = 67). Drug use at Wave IV was measured as the standardized mean 

                                                
39 Appendix B provides a list of the items (and the Add Health reference ID) used to create the measures for the 
current study. 
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score on four items (two items had to have valid values) capturing self-reported involvement in 

minor and serious drug use. Items such as “During the past 30 days, on how many days did you 

smoke cigarettes?” and “During the past 12 months, on how many days did you use [favorite 

drug]?” were included in this measure. Scores on the four items were subjected to a reliability 

analysis, which indicated a moderate level of reliability (a = 48). Higher scores on delinquency 

(Wave IV) and drug use (Wave IV) represent higher levels of self-reported antisocial 

involvement. 

5.2.2.2. Treatment Conditions 

Two treatment condition variables were created for the current study: Intelligence (Wave 

III) and Educational Attainment (Wave III). Intelligence at Wave III was measured as the 

standardized score on the Peabody Picture Vocabulary Test (PPVT). The PPVT was 

administered during the Wave III interview and is a validate measure of verbal intelligence (Rao, 

Leo, Bernardin, and Unverzagt, 1991). Higher scores on intelligence (Wave III) represent higher 

levels of cognitive abilities. Educational attainment at Wave III dichotomously captured if the 

participant had completed at least one year of college at the time of the Wave III interview. At 

the time of the Wave III interview, the majority of the of the participants were over the age of 18 

(approximately 99 percent, 149 individuals, were 18 years of age at the Wave III interview) and 

should have had the opportunity to enroll in higher education institutions. Educational attainment 

was coded where a value of “1” indicated that the participant self-reported completing at least 

some college and a value of “0” indicated that the participant completed 12th grade or less at the 

time of the interview.40   

5.2.2.3. Covariates (Wave I) 

                                                
40 While unable to directly determine high school enrollment, only approximately 1 percent of the sample was 18 
years of age at the time of the interview. 
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Thirteen covariates were measured at Wave I and included in the multivariate models as 

control variables. Evidence suggests that the covariates are empirically and theoretically related 

to levels of intelligence, educational attainment, and self-reported antisocial involvement (Silver 

and Nedelec, 2018). First, Age was measured as the age of the participant at the time of the Wave 

I interview. Age was created by subtracting the birth year for the participants from the year of the 

Wave I interview.  Second, Non-White was measured as the interviewer’s perception of the racial 

category of the participant, where a value of “0” indicated that the participant was White and a 

value of “1” indicated that the participant was non-White. Third, Male was operationalized as the 

interviewer’s perception of the biological sex that the participant belonged to, where a value of 

“0” indicated female and a value of “1” indicated male.41  

Fourth, Parental Income was a continuous operationalization of the parent reported 

amount of total income a participant’s household earned before taxes in 1994. Specifically, the 

question asked the parents their own income, the income of everyone else in your household, and 

income from welfare benefits, dividends, and all other sources. Higher scores on parental income 

indicate higher levels of household income within the family. Fifth, Parental Employment Status 

was the self-reported employment status of the parent who completed the parent portion of the 

Add Health interview. Parent employment status was coded as a dichotomy where a value of “0” 

indicated that the parent was not employed full time in the past 12 months, and a value of “1” 

indicated that the parent was employed full time in the past 12 months. Sixth, Parental 

Education was a self-reported measure of the parent’s educational attainment. A value of “0” on 

parental education signifies that the parent did not attend college, while a value of “1” on 

parental education signifies that the parent did attend college at some point.  

                                                
41 We deferred to the interviewer’s perception of the racial category and biological sex to capture the outward 
reflection of the participants racial category and biological sex.  
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Seventh, Maternal Conflict was operationalized as the standardized mean of seven items 

(four items had to have valid scores) requiring the participants to self-report the amount of 

conflict they have had with their mother (or maternal caregiver). All of the items were reverse 

recoded (so that higher scores indicated greater maternal conflict) and were subjected to a 

reliability analysis, which indicated a high level of reliability between the items (V = 	 .85). 

Eight, Paternal Conflict was operationalized as the standardized mean of seven items (four items 

had to have valid scores) requiring the participants to self-report the amount of conflict they have 

had with their father (or fraternal caregiver). All of the items were reverse recoded (so that 

higher scores indicated greater paternal conflict) and subjected to a reliability analysis, which 

indicated a high level of reliability between the items (V = 	 .89). Higher scores on maternal 

conflict and paternal conflict indicate higher levels of parental conflict in the participants’ lives.42 

Ninth, School Attachment measured participants’ self-reported attachment to prosocial school 

activities. Scores on school attachment represent the standardized mean of nine items (five items 

had to have valid scores), and higher values indicate higher levels of attachment to school 

activities (V = 	 .78).  

Tenth, Social Support was operationalized as the mean of eight items (four had to have 

valid scores) capturing participants’ perceptions of support from the people involved in their 

lives. One item was reverse recoded to account for the structure of the question (see Appendix 

B). Higher scores on social support indicate higher levels of support from the people involved in 

the participant’s life (V = 	 .85). Eleventh, Peer Drug Use was operationalized as the amount of 

self-reported best friends who smoked at least once a day or drank and used marijuana at least 

once a month. Participants had to have valid scores on all three items to receive a score on peer 

                                                
42 These were demarcated just to observe if maternal conflict and paternal conflict differentially influenced 
educational attainment or intelligence. 
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drug use. Higher values on peer drug use indicated that a higher proportion of the participant’s 

best friends engaged in antisocial activities such as drinking and smoking (V = 	 .76). Twelfth, 

Baseline Delinquency was operationalized as the mean of 14 items (seven items had to have 

valid scores) capturing self-reported involvement in minor and serious delinquent activities 

during Wave I (a = .83). Higher scores on baseline delinquency correspond to higher levels of 

self-reported antisocial conduct at Wave I. Thirteenth, Baseline Drug Use was operationalized as 

the mean of six items (three items had to have valid scores) capturing self-reported involvement 

in minor and serious drug use during Wave I (a = 68). Higher scores on baseline drug use 

correspond to higher levels of self-reported drug use at Wave I. 

5.2.3. Analytical strategies 

 5.2.3.1. Study 1: Exploring the Existence of Social and Genetic Self-Selection 

 A four-step analytical plan was used to evaluate the degree to which self-selection could 

potentially confound the association between the treatment conditions (i.e., intelligence and 

educational attainment at Wave III) and the dependent variables (i.e., delinquency and drug use 

at Wave IV). First, descriptive statistics and bivariate correlation coefficients were produced for 

the full sample, the MZ and same sex DZ twin subsample, and the MZ and different sex DZ twin 

subsample. Second, bivariate and multivariate OLS models were estimated, where the dependent 

variables (i.e., delinquency at Wave IV and drug use at Wave IV) were regressed on the 

treatment conditions (i.e., Intelligence at Wave III43 and educational attainment at Wave III) and 

the covariates. Third, using OLS and binary logistic regression models the treatment conditions 

(i.e., Intelligence at Wave III and educational attainment at Wave III) were regressed on the 13 

                                                
43 The dependent variables were regressed on a linear, quadratic, and cubic specification of intelligence to account 
for the evidence suggesting that intelligence and antisocial behavior could potentially have a curvilinear association. 
For all subsequent models, the dependent variables were regressed on a linear, quadratic, and cubic specification of 
intelligence. 
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covariates. By regressing the treatment conditions (i.e., Intelligence at Wave III and educational 

attainment at Wave III) on the covariates, one can observe the degree to which environmental 

factors predict selection into the treatment conditions. Finally, ACE decomposition models were 

estimated where the variance in the treatment conditions (i.e., Intelligence at Wave III and 

educational attainment at Wave III) were attributed to genetic (a), shared-environmental (c), and 

non shared environmental factors (e). Two sets of ACE decomposition models were estimated, 

one for the MZ and same sex DZ twin subsample and one for the MZ and different sex DZ twin 

subsample. In sum, the five-steps provide an indication of how both genetic and social self-

selection could have influenced scores on the two treatment conditions (i.e., Intelligence at Wave 

III and educational attainment at Wave III).  

5.2.3.2. Study 2: Adjusting for Social Self-Selection 

A four-step analytical strategy was employed to adjust for the confounding effects of 

social self-selection on the association between intelligence and antisocial behavior, and 

educational attainment and antisocial behavior. First, for the dichotomously coded educational 

attainment (Wave III) the predicted probabilities from the binary logistic regression models 

where educational attainment was regressed on the 13 covariates were saved. These predicted 

probabilities served as the propensity scores for the PSM. Second, the treatment and control 

cases for educational attainment (i.e., Did not complete one year of college vs. did complete one 

year of college) were matched using nearest neighbor matching with varying calipers (i.e., .05, 

.01, .005, .001, .0001). After the cases were matched, balance was assessed using t-tests and 

percent bias values.  

Third, intelligence (Wave III) was subjected to generalized propensity score (GPS) 

matching, where participants were matched on the 13 covariates. To satisfy the assumptions 

associated with balancing during GPS matching, ten equal-width percentiles were created on the 
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intelligence scale. The range of scores on each percentile were specified as such: 10th percentile 

= 7 to 79, 20th percentile = 80 to 87, 30th percentile = 88 to 91, 40th percentile = 92 to 96, 50th 

percentile = 97 to 103, 60th percentile = 104 to 106, 70th percentile = 107 to 108, 80th percentile = 

109 to 111, 90th percentile = 112 to 116, 100th percentile = 117 to 122. The percent reduction in 

bias (i.e., percent increase in balance) for the 13 covariates was assessed between the pre-

matching and post-matching samples. Finally, various post-matching bivariate OLS regression 

models were estimated where delinquency and drug use was regressed on educational attainment 

and intelligence (linear, quadratic, cubic specifications). All analyses were estimated on the full 

Add Health sample.  

5.2.3.3. Study 3: Adjusting for Genetic Self-Selection 

A four-step analytical strategy was employed to adjust for the confounding effects of 

genetic self-selection on the association between intelligence and antisocial behavior, and 

educational attainment and antisocial behavior. First, descriptive statistics and t-tests were 

produced to evaluate if substantive mean differences existed between the MZ twins randomly 

assigned as twin 1 and twin 2 in the twin pairs. Second, cross-twin correlation coefficients were 

estimated to observe the differences on covariates within twin pairs. Furthermore, the cross-twin 

correlation coefficients help determine the variables in which the assumptions associated MZ 

difference scores could be satisfied. Third, MZ difference scores on the dependent variables 

(delinquency and drug use at Wave IV), the treatment conditions (intelligence and educational 

attainment at Wave III), and the covariates (Wave I) were created for the variables with a cross-

twin correlation coefficients below 1.00.44 Descriptive statistics for the MZ difference scores 

were produced. Finally, bivariate and multivariate OLS models were estimated where the MZ 

difference score for the dependent variables (i.e., Delinquency at Wave IV and drug use at Wave 

                                                
44 A MZ difference score for Non-White was not created because the minor discrepancy in race between MZ twins 
corresponds to measurement error. 
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IV) were regressed on the MZ difference score for the treatment conditions (i.e., Intelligence at 

Wave III45 and educational attainment at Wave III) and the MZ difference scores for the 

covariates. All analyses were estimated on the MZ twin subsample using robust standard errors. 

5.3. Study 4: GAPSM Proof of Concept 

 As initially proposed in Subsection 3.4. of Chapter 3, the purpose of the current 

dissertation is to advance upon the preexisting methodologies by adjusting for both social and 

genetic self-selection during the estimation of post-matching point estimates. The proposed 

advancement, genetically adjusted propensity score matching (GAPSM), provides a novel 

approach that allows for the integration of polygenic risk scores and socially constructed 

predicted probabilities during the matching of participants. Specifically, GAPSM is designed to 

attain estimates virtually uninfluenced by the effects of observed genetic and observed 

environmental factors on self-selection into a treatment condition. Nevertheless, while the 

theoretical arguments presented in Subsection 3.4. of Chapter 3 are supported, the principal 

procedure for evaluating the initial statistical validity of a new methodology is the employment 

of a simulation analysis (Lewis and McKenzie, 2017).  

For evaluating the potential validity of statistical methodologies, simulation analyses 

provide three advancements over the employment of primary or secondary data (Lewis and 

McKenzie, 2017). First, simulations provide the ability to compare the point estimates derived 

from different methodologies to a true point estimate specified by the user. Specifically, in the 

current context we can compare the point estimates for the bivariate association between a 

treatment condition and an outcome of interest derived from an unconfounded PSM, a MZ 

difference score, and various iterations of a GAPSM to the true point estimate. Thus, we can 

                                                
45 The dependent variables were regressed on a linear, quadratic, and cubic specification of intelligence to account 
for the evidence suggesting that intelligence and antisocial behavior could potentially have a curvilinear association. 
For all subsequent models, the dependent variables were regressed on a linear, quadratic, and cubic specification of 
intelligence. 



 84 

statistically identify the conditions in which the point estimate for the GAPSM approach is closer 

(or not) to the true point estimate than the point estimate derived from the PSM approach and the 

MZ difference score approach.  

Second, as alluded to, simulation analyses allow the user to specify an infinite number of 

conditions in which comparisons can occur. In the current context, the specification of divergent 

conditions allows for the identification of various conditions in which the point estimate for the 

GAPSM approach is closer (or not) to the true point estimate than the point estimates derived 

from the PSM approach and the MZ difference score approach. Finally, since simulation 

analyses are fundamentally derived from Bayesian statistics, information from previous studies 

can be integrated into the simulation analysis to emulate potential realities when considering the 

bivariate association between a treatment condition and an outcome of interest. For instance, 

pervious research and the findings provided in studies 1, 2, and 3 could and should guide the 

selection of conditions in which comparisons can occur. Specifically, considering that complex 

traits, such as intelligence and educational attainment, are only partially genetic the number of 

conditions in which comparisons should occur can be reduced to conditions that could 

potentially exist. Consistent with these advantages, the simulation analyses provided in Study 4 

assess the empirical validity of the GAPSM approach, the conditions in which the GAPSM 

approach is superior to the unconfounded PSM approach, and the conditions in which the 

GAPSM approach is superior to the MZ difference score approach.  

A superior way of demonstrating the validity of the GAPSM approach through simulation 

analyses is to use the theoretical logic developed by behavioral and quantitative geneticists. To 

revisit, the variance in a phenotype (or treatment condition) can be partitioned into three 

independent latent factors: genetics (a), the shared environment (c), and the non shared 

environment (e). Rationally, the two preexisting methodologies (PSM approach and MZ 
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difference score approach) and the GAPSM approach derive matches using information from one 

or more of the following factors. 

 In an unconfounded PSM approach, it can be theoretically assumed that all the variance 

in the treatment condition predicted by the shared environment (c) and the non shared 

environment (e) is used to match participants. While the unconfounded PSM represents an ideal 

situation, it is more likely that only a portion of the variance in the treatment condition predicted 

by the shared environment (c) and the non shared environment (e) is used to match participants. 

The MZ difference score approach allows scholars to assume that all the variance in the 

treatment condition affected by genetics (a) and the shared environment (c) is used to match 

participants (i.e., MZ twins). Considering that the theoretical foundation is quite strong and that 

the MZ difference score approach relies on adjusting for unobserved factors, it is safe to assume 

that the majority of MZ difference score analyses adjust for all of the variance in the treatment 

condition predicted by unobserved genetic factors (a) and the shared environment (c; Plomin et 

al., 2013).  

Distinct from the unconfounded PSM and the MZ difference score, the GAPSM approach 

theoretically allows scholars to assume that all of the variance in the treatment condition 

predicted by genetics (a) will be used to match participants (due to the integration of a polygenic 

risk score)46, but only a proportion of the variance in the treatment condition predicted by the 

shared environment (c) and the non shared environment (e) is used to match participants. Given 

these theoretical expectations for the GAPSM approach, 21 iterations of GAPSM were specified 

where fluctuating proportions of the variance in the treatment condition predicted by the shared 

environment (c) and the non shared environment (e) were used to match participants. Succeeding 

the matching, bivariate point estimates, where the outcome of interest was regressed on the 

                                                
46 This assumption can be satisfied if the user employs the entire genome, rather than statistically significant alleles, 
to create the polygenic risk score. 



 86 

treatment condition, were produced for the 21 iterations and compared to conditions emulating 

that of the unconfounded PSM approach (all the variance in the treatment condition predicted by 

the shared environment (c) and the non shared environment (e) are used to match participants) 

and the MZ difference score approach (all the variance in the treatment condition predicted by 

genetics (a) and the shared environment (c) are used to match participants). 

5.3.1. Simulating data 

For the ease of explaining the creation of the simulation data and the subsequent 

simulation analyses, the R code for the specification of the data will be reviewed in the current 

subsection. The code presented can be imported into R and used to generally reproduce the 

results presented.  

1. # Specifying the number of cases within the dataset.  
2. n = 50000 
3. # Specifying uncorrelated covariates of interest  
4. x1 = rnorm(n,100,15) 
5. x2 = rnorm(n,100,15) 
6. x3 = rnorm(n,100,15) 
7. x4 = rnorm(n,100,15) 
8. x5 = rnorm(n,100,15) 
9. x6 = rnorm(n,100,15) 
10. x7 = rnorm(n,100,15) 
11. x8 = rnorm(n,100,15) 
 

Prior to the creation of the dataset, the number of cases included in the dataset must be 

specified. As specified in Line 2, the dataset was specified to contain 50,000 cases. Succeeding 

the specification of the N-size, lines 4 through 11 create the uncorrelated covariates that will be 

used to match the treatment and control participants. As indicated in subsequent code, x1–x4 will 

measure the non shared environment and x5–x8 will measure the shared environment. The 

command rnorm informs R to create a normal distribution of n cases (i.e., 50000) with a mean of 

100 and a standard deviation of 15.  

12. # Specifying the non shared environment.  
13. e = .25*x1+.25*x2+.25*x3+.25*x4 
14. # Specifying the shared environment.  
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15. c = .25*x5+.25*x6+.25*x7+.25*x8 
16. # Specifying the genetics.  
17. a = 0*s+0*ns+ rnorm(n,100,15) 
18. # Specifying an error term.  
19. E = 0*g+0*s+0*ns+ rnorm(n,100,15) 
 

 As indicated by Line 13, the simulation of the non shared environment (e) was equal to 

.25*x1+.25*x2+.25*x3+.25*x4. The R specification for the non shared environment (e; Line 13) 

can be rationally translated into a regression formula, where the intercept is equal to “0” and the 

slope of the regression line for each variable (i.e., x1, x2, x3, x4) is equal to “.25.” Furthermore, 

evident by the specification, all the variance in the non shared environment (e) is equally 

distributed amongst the four variables (i.e., x1, x2, x3, x4). The equal distribution of the variance 

in the non shared environment (e) between the four variables (i.e., x1, x2, x3, x4) is important to 

specification of the 21 iterations of GAPSM. Similar to the non shared environment, the shared 

environment (c; Line 15) was specified to be equal to .25*x5+.25*x6+.25*x7+.25*x8. Again, the 

R specification for the shared environment (c; Line 15) can be rationally translated into a 

regression formula, where the intercept is equal to “0” and the slope of the regression line for 

each variable (i.e., x5, x6, x7, x8) is equal to “.25.” Notably, due to the reliance on different 

variables for the specification of the non shared environment (e; Line 13; x1, x2, x3, x4) and the 

shared environment (c; Line 15; x5, x6, x7, x8) these terms (i.e., e and c) can be assumed to be 

uncorrelated.  

 Line 17 provides the specification for the genetic factors (a), which is a normal 

distribution of 50,000 cases with a mean of 100 and a standard deviation of 15. Furthermore, as 

specified (i.e., 0*s+0*ns+ rnorm(n,100,15)), genetic factors (a) was uncorrelated with the non 

shared environment (e) and the shared environment (c). Line 19 provides the specification for the 

error term (E), which is a normal distribution of 50,000 cases with a mean of 100 and a standard 

deviation of 15. Again, as specified (i.e., 0*g+0*s+0*ns+ rnorm(n,100,15)), the error term (E) 
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was uncorrelated with the genetic factors (a), the non shared environment (e), and the shared 

environment (c).  

The specification of uncorrelated terms for the genetic factors (a), the non shared 

environment (e), the shared environment (c), and the error term (E) relies on theoretical 

knowledge that the probability of exposure to a treatment condition can be demarcated into four 

independent factors (genetic factors (a), non shared environmental (e), shared environmental (c), 

and error (E)). To review, the 19 lines of R code covered so far create four normally distributed 

variables (the genetic factors (a), the non shared environment (e), the shared environment (c), 

and the error term (E)), with two of those variables (the non shared environment (e), the shared 

environment (c)) delineated into four measures each (the non shared environment (e) = x1, x2, 

x3, x4; the shared environment (c) = x5, x6, x7, x8).  

20. # Normalizing the non shared environment.  
21. e_n = ((e-min(e))/(max(e)-min(e))) 
22. # Normalizing the shared environment.  
23. s_n = ((s-min(s))/(max(s)-min(s))) 
24. # Normalizing the genetics.  
25. a_n = ((a-min(a))/(max(a)-min(a))) 
26. # Normalizing an error term.  
27. E_n = ((E-min(E))/(max(E)-min(E))) 
 

 For ease of interpretation, preceding the specification of a dichotomous treatment 

condition it is commonly acceptable to normalize (i.e., transform the normally distributed 

variables to a distribution that ranges between 0 and 1) the variables of interest (genetic factors 

(a), non shared environment (e), shared environment (c), and error term (E)) to emulate that of a 

risk score. By normalizing the data, one can attribute the desired amount of variance in the 

treatment condition to each of the four factors and create a dichotomous outcome where scores 

(or probabilities) greater than .50 are equal to a value of “1” on the dichotomous treatment 

condition and scores (or probabilities) equal to or less than .50 are equal to a value of “0” on the 

dichotomous treatment condition. Lines 21, 23, 25, and 27 are the specification for normalizing 
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the non shared environment (e), shared environment (c), genetic factors (a), and the error term 

(E), respectively. As outlined in the subsequent section, the normalization of these four variables 

permits the specification of numerous treatment conditions in which the point estimates derived 

from the unconfounded PSM approach, the MZ difference score approach, and various GAPSM 

iterations can be compared to a true (i.e., specified) point estimate.  

5.3.2. Specification of the treatment conditions (40 treatment conditions) 

 Consistent with contemporary scholarship on simulation analysis (e.g., Evans and Olson, 

2001; Lewis and McKenzie, 2017), the comparisons between the point estimates derived from an 

MZ difference score approach, the point estimates derived from an unconfounded PSM 

approach, and the point estimates derived from various GAPSM iterations were estimated 

succeeding the specification of various treatment conditions. For the current study, 40 different 

specifications of the treatment condition were created.47 These specifications of the treatment 

condition differed by the amount of variance in the treatment condition attributable to genetic 

factors (a), the non shared environment (e), and the shared environment (c).  

For the first set of 13 specifications of the treatment condition, the amount of variance in 

the treatment condition predicted by genetic factors (a) increased from .05 to .65 in .05 

increments, while the variance in the treatment condition predicted by the non shared 

environment (e) and the shared environment (c) were set equal to each other. For instance, when 

a = .20, both e and c = .38. To reduce the likelihood of estimating a perfect model, 4 percent (or 

.04) of the variance in the treatment condition was predicted by the error term (E).48 For the 

second set of 13 specifications of the treatment condition, the amount of variance in the 

treatment condition predicted by genetic factors (a) increased from .05 to .65 in .05 increments, 

                                                
47 Each of the 40 specifications for the treatment conditions are provided in Appendix D.  
48 Four percent (or .04) of the variance in the treatment condition was consistently predicted by the error term (E) 
across the 40 specifications of the treatment conditions. 
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while the variance in the treatment condition predicted by the non shared environment (e) was 

approximately three times that of the variance in the treatment condition predicted by the shared 

environment (c). For example, when a = .20, e = .56 and c = .19.  

For the third set of 13 specifications of the treatment condition, the amount of variance in 

the treatment condition predicted by genetic factors (a) increased from .05 to .65 in .05 

increments, while the variance in the treatment condition predicted by the shared environment (c) 

was approximately three times that of the variance in the treatment condition predicted by the 

non shared environment (e). To provide an example, when a = .20, e = .19 and c = .56. The final 

specification was the point of equivalence, where the variance in the treatment condition 

predicted by genetic factors (a), the non shared environment (e), and the shared environment (c) 

were set all equal to each other. For example, the variance in the treatment condition predicted 

by genetic factors (a), the non shared environment (e), and the shared environment (c) were all 

set to .32. Again, the specification of these conditions is best illustrated by the R code, which 

takes the form of a simple regression formula. 

28. ## Condition of equivalence ## 
29. # Creating the treatment condition 
30. tc.EQ = .32*e_n + .32*c_n + .32*a_n +.04*E_n 
 

Lines 28-30 of the R code represents the specification for the treatment condition of 

equivalence. Considering that the genetic factors (a), the non shared environment (e), the shared 

environment (c), and the error term (E) were normalized, the specification of .32* (i.e., the slope 

coefficient) can be interpreted as the percentage of the variance in the treatment condition 

attributed to the specified factor. Furthermore, consistent with the normalized factors tc.EQ (i.e., 

the treatment condition) is on a continuous scale ranging from 0 to 1. To provide a mathematical 

example, if a participant’s score on e_n (normalized non shared environmental factors) was .32, 

on c_n (normalized shared environmental factors) was .32, and on a_n (normalized genetic 
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factors) was .32, the mathematical formula presented in line 30 would provide a score of .31 on 

tc.EQ. The difference can be attributed to the existence of randomly distributed measurement 

error (E).  

31. # creating a dichotomy, where anyone below .50 scored a 0 and anyone 
above .50 scored a 1 

32. tEQ = tc.EQ 
33. tEQ[tEQ <= .50] = 0 
34. tEQ[tEQ > .50] = 1 
 

 The 40 specifications of the treatment condition were recoded into dichotomous variables 

where participants with scores equal to or less than .50 received a score of “0” on the treatment 

dichotomy and participants with scores greater than .50 received a score of “1” on the treatment 

dichotomy. Considering the example provided above, the participant’s score on the treatment 

dichotomy for the equivalence treatment condition (i.e., variance in t explained by e = .32; 

variance in t explained by c = .32; variance in t explained by g = .32) would most likely be a “0” 

depending upon the score on the error term (E). Lines 31 through 34 represent this coding 

scheme.  

5.3.3. Specification of the outcome of interest  

35. # the dependent variable for the condition of equivalence 
36. yEQ = 1.00*tEQ + 1.25*e_n + 1.25*c_n + 1.25*a_n + .005*E_n 
  

Succeeding the specification of the dichotomous treatment conditions, the Outcomes of 

Interest (y) were specified as a function of the dichotomous treatment conditions (t), the non 

shared environment (e), the shared environment (c), the genetic factors (a), and the error term 

(E). The formula for the outcome of interest when the specification of the treatment condition 

was the point of equivalence is presented in Line 36. Due to the modifications in the 

dichotomous treatment conditions (i.e., the 40 specifications described in the preceding 

subsection) a distinct outcome of interest (y) was created for each specification of the treatment 



 92 

condition (i.e., 40 different y variables). Nonetheless, all the outcomes of interest (y) were 

identical excluding the treatment condition (t), which varied between specifications (i.e., t1 for 

specification 1 up until t39 for specification 39, and tEQ for the point of equivalence). Notably, 

as indicated by the formula, the true point estimate for the association between the treatment 

conditions (t) and the outcomes of interest (y) was set at 1.00. Given that the non shared 

environment (e), the shared environment (c), the genetic factors (a), and the error term (E) 

confound the association between the treatment conditions (t) and the outcomes of interest (y) the 

only way to obtain the true point estimate would be to run a multivariate regression model or a 

post-matching regression model where all of the independent factors (i.e., t, e, c, a, E) are 

specified within the formula. Any other specification of a multivariate regression model or a 

post-matching regression model would produce a biased point estimate of the association 

between the treatment conditions (t) and the outcomes of interest (y).  

5.3.4. Analytical strategy  

 To evaluate the validity of the GAPSM methodology, 30 point estimates were produced 

for each specification of the treatment condition (i.e., 40 different specifications, 120 point 

estimates in total). First, two pre-matching point estimates were produced, one being the true 

point estimate (i.e., the full model) and the other being the bivariate confounded association 

between the treatment condition (t) and the outcome of interest (y; i.e., y regressed on t). Second, 

the three distinct point estimates were produced after matching the participants on the non shared 

environment (e), the shared environment (c), and the genetic factors (a), respectively.49  

                                                
49 To specify, all the post-matching point estimates were derived from a bivariate analysis of the outcome of interest 
(y) regressed on the dichotomous treatment condition (t) using a matched sample. The matched samples were 
created using nearest neighbor matching with a caliper of .05, succeeding the estimation of the specified predicted 
probabilities derived from a binary logistic regression model where the dichotomous treatment condition (t) was 
regressed on the factors specified in the condition of interest. 
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Third, a non shared environment (e) and a shared environment (c; where participants 

were matched with scores on x1, x2, x3, x4, x5, x6, x7, and x8) post-matching point estimate 

was produced to emulate that of an unconfounded post-matching PSM point estimate. Fourth, a 

non shared environment (e) and genetic factors (a; where participants were matched with scores 

on x1, x2, x3, x4, and a) post-matching point estimate was produced to emulate that of a 

genetically sensitive analysis without accounting for the shared environment. Fifth, a shared 

environment (c) and genetic factors (a; where participants were matched with scores on x5, x6, 

x7, x8, and g) post-matching point estimate was produced to emulate that of a MZ difference 

score point estimate. Sixth, a non shared environment (e), a shared environment (c), and genetic 

factors (a; where participants were matched with scores on x1, x2, x3, x4, x5, x6, x7, x8, and g) 

post-matching point estimate was produced to emulate that of a perfect post-GAPSM point 

estimate. Generally, the perfect post-GAPSM point estimate was equal to that of the true point 

estimate.  

Finally, 21 iterations of post-GAPSM point estimates were produced to identify the 

various situations where the post-GAPSM point estimates would more closely approach the true 

point estimate than the MZ difference score point estimate and the unconfounded propensity 

score point estimate.50 Six of the iterations varied the degree to which participants were matched 

on the non shared environment (e). Specifically, post-GAPSM point estimates were produced 

when the participants were matched on genetics (a) and one, two, or three of the predictors for 

the non shared environment (e; i.e., x1, x2, x3, and x4) and post-GAPSM point estimates were 

produced when the participants were matched on genetics (a), the shared environment (c), and 

one, two, or three of the predictors for the non shared environment (e; i.e., x1, x2, x3, and x4).  

                                                
50 All the post-GAPSM point estimates were produced when participants were matched on genetics (g) because of 
the theoretical expectation that a polygenic score would measure all the variation in a treatment condition predicted 
by an individual’s genome.  
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Furthermore, six of the iterations varied the degree to which participants were matched 

on the shared environment (c). To specify, post-GAPSM point estimates were produced when 

the participants were matched on genetics (a) and one, two, or three of the predictors for the 

shared environment (c; i.e., x5, x6, x7, and x8) and post-GAPSM point estimates were produced 

when the participants were matched on genetics (a), the non shared environment (e), and one, 

two, or three of the predictors for the shared environment (c; i.e., x5, x6, x7, and x8). The final 

nine iterations varied the degree to which participants were matched on the non shared 

environment (e) and the degree to which participants were matched on the shared environment 

(c). To provide a description, post-GAPSM point estimates were produced when the participants 

were matched on genetics (a) and one, two, or three of the predictors for the non shared 

environment (e; i.e., x1, x2, x3, and x4) and one, two, or three of the predictors for the shared 

environment (c; i.e., x5, x6, x7, and x8). Overall, the 21 iterations of post-GAPSM point 

estimates were designed to provide a substantive number of comparisons between the GAPSM 

methodology and the PSM approach, and the GAPSM methodology and the MZ difference score 

approach.  
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CHAPTER 6: RESULTS 

6.1. Study 1: Results: Exploring the Existence of Social and Genetic Self-Selection 

6.1.1 Descriptive statistics full sample 

 Table 6.1 presents the descriptive statistics for the variables of interest within the full 

restricted use Add Health Data set. As illustrated, the average age of the Wave I participants was 

16.15, 38 percent of  the sample was of Non-White and was 49 percent of the sample was male. 

Additionally, parental respondents indicated an average household income of 46 thousand dollars 

a year (Parent Income: +® = 45.73; SD = 51.62), 62 percent said that they were employed full 

time, and 43 percent said that they completed at least some college. The participants on average 

reported a low level of maternal (+® = -.01; SD = 1.28) and paternal conflict (+® = -.01; SD = 1.38; 

Min, Max: Maternal Conflict: -1.35, 7.49; Paternal Conflict: -1.37, 6.12), and a high level of 

school attachment (+® = .01; SD = 1.08; Min, Max: -4.88, 2.06). The descriptive statistics 

indicated that the majority of the sample had high levels of social support (+® = 7.98; SD = 1.19), 

had approximately one close friend use drugs at the baseline (+® = .85; SD = .89), had engaged in 

low levels of delinquent behaviors at the baseline (+® = .55; SD = .70), and had reported using 

low levels drugs at the baseline (+® = .53; SD = .47). 

 In terms of the treatment conditions, the average score on the Peabody Picture 

Vocabulary Test at Wave III was approximately 98.48, and the majority of the sample had 

completed at least 1 year of college prior to the interview (educational attainment: +® = .54). At 

Wave IV, the participants on average reported low levels of delinquent activity (+® = .07; SD = 

.25) and low levels of drug use on the standardized scale (+® = .01; SD = 1.25; min, max: -1.60, 

3.45).  
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Table 6.1: Descriptive statistics for the full sample. 
  N +®	(%) SD Min, Max 
Dependent Variables (Wave IV)     

Delinquency  15,638 .07 .25 .00, 5.60 
Drug Use  15,522 .01 1.25 -1.60, 3.45 

Treatment Conditions (Wave III)     
Intelligence  14,652 98.48 17.09 7, 122 
Educational Attainment  15,183 54% .50 0, 1 

Covariates (Wave I)     
Age 20,728 16.15 1.74 12, 21 
Non-White  20,704 38% .49 0, 1 
Male 20,743 49% .50 0, 1 
Parent Income 15,351 45.73 51.62 0, 999 
Parent Employment Status 17,609 62% .49 0, 1 
Parent Education 17,527 43% .49 0, 1 
Maternal Conflict  19,386 -.01 1.28 -1.35, 7.49 
Paternal Conflict 14,403 -.01 1.38 -1.37, 6.12 
School Attachment 20,279 .01 1.08 -4.88, 2.06 
Social Support  20,092 7.98 1.19 2, 10 
Peer Drug Use 20,028 .85 .89 0, 3 
Baseline Delinquency 20,410 .55 .70 0, 6 
Baseline Drug Use 20,221 .53 .47 0, 2 

Notes: Drug Use, Maternal Conflict, Paternal Conflict, and School attachment were standardized to account for 
the differences in coding schemes between items. 
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 Table 6.2 provides the correlation matrix for the variables of interest within the full 

restricted use Add Health Data set. As illustrated, delinquency (Wave IV) was associated with 

educational attainment (Wave III; r = -.06, p < .05), but not intelligence (Wave III; r = -.01, p > 

.05). Furthermore, drug use (Wave IV) was positively associated with intelligence (Wave III; r = 

.10, p < .05) and negatively associated with educational attainment (Wave III; r = -.07, p < .05). 

Additionally, intelligence was associated with seven of the covariates (Non-White: r = -.29; 

Male: r = .03; Parental Income: r = .17; Parent Employment Status: r = .02; Parent Education: r 

= .20; School attachment: r = .03; Baseline Drug Use: r = .04, all associations were p < .05). 

Furthermore, educational attainment was associated with all of the Wave I covariates (Age: r = 

.02; Non-White: r = -.04; Male: r = -.07; Parental Income: r = .21; Parent Employment Status: r 

= .06; Parent Education: r = .28; Maternal Conflict: r = -.05; Paternal Conflict: r = -.05; School 

attachment: r = .16; Social Support: r = .09; Peer Drug Use: r = -.17; Baseline Delinquency: r = -

.10; Baseline Drug Use: r = -.14, all associations were p < .05). 
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Table 6.2. Correlation matrix for the Add Health sample. 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Dependent Variables (Wave IV)                 

Delinquency (1) --                

Drug Use (2) .28* --               

Treatment Conditions (Wave III)                 

Intelligence (3) -.01 .10* --              

Educational Attainment (4) -.06* -.07* .30* --             

Covariates (Wave I)                 

Age (5) -.07* -.09* -.01 .02* --            

Non-White (6) .03* -.14* -.29* -.04* .04* --           

Male (7) .13* .16* .03* -.07* .05* -.01 --          

Parent Income (8) -.02* .04* .17* .21* -.01 .13* -.01 --         

Parent Employment Status (9) .01 .03* .02* .06* .01 .06* -.01 .03* --        

Parent Education (10) .01 .04* .20* .28* -.05* -.02* .01 .23* .15* --       

Maternal Conflict (11) .03* .05* .01 -.05* .12* -.02* -.07* -.01 -.01 -.02* --      

Paternal Conflict (12) .02* .06* -.01 -.05* .16* .05* -.09* -.02* .01 -.03* .45* --     

School Attachment (13) -.10* -.15* .03* .16* -.05* .01 -.05* .04* -.01 .01 -.28* -.30* --    

Social Support (14) -.06* -.11* -.01 .09* -.17* -.01* -.01 .03* -.02* .01 -.58* -.56* .46* --   

Peer Drug Use (15) .09* .23* -.01 -.17* .25* -.10* .05* -.01 .02* -.04* .16* .19* -.29* -.28* --  
Baseline Delinquency (16) .18* .23* .01 -.10* .01 .01 .12* -.01 .02* .01 .22* .21* -.36* -.32* .41* -- 
Baseline Drug Use  .11* .32* .04* -.14* .22* -.13* .03* .01 .04* -.02* .21* .22* -.32* -.31* .61* .50* 

Notes: Pairwise deletion was used to remove cases with missing values on the specified variables. The majority of the correlation coefficients represent Pearson 
correlations. The correlation coefficients for educational attainment, non-white, male, parent employment status, and parent education point biserial coefficient. 
*p < .05 
 



 99 

6.1.2. Descriptive statistics MZ/DZ subsamples 

Table 6.3 presents the descriptive statistics for the variables of interest within the MZ and 

same sex DZ twins. As illustrated, the average age of the Wave I participants was 16.08, 37 

percent of  the sample was of Non-White and was 52 percent of the sample was male. 

Additionally, parental respondents indicated an average household income of 47 thousand dollars 

a year (Parent Income: !" = 46.76; SD = 50.22), 66 percent said that they were employed full 

time, and 49 percent said that they completed at least some college. The participants on average 

reported a low level of maternal (!" = -.08; SD = 1.19) and paternal conflict (!" = -.11; SD = 1.25; 

Min, Max: Maternal Conflict: -1.35, 6.36; Paternal Conflict: -1.37, 6.12), and a high level of 

school attachment (!" = .02; SD = 1.06; Min, Max: -3.89, 2.06). The descriptive statistics 

indicated that the majority of the sample had high levels of social support (!" = 8.07; SD = 1.15), 

had approximately one close friend use drugs at the baseline (!" = .85; SD = .90), had engaged in 

low levels of delinquent behaviors at the baseline (!" = .53; SD = .68), and had reported using 

low levels drugs at the baseline (!" = .51; SD = .45). 

 In terms of the treatment conditions, the average score on the Peabody Picture 

Vocabulary Test at Wave III was approximately 97.12, and the majority of the sample had 

completed at least 1 year of college prior to the interview (educational attainment: !" = .53). At 

Wave IV, the participants on average reported low levels of delinquent activity (!" = .06; SD =  

.20) and low levels of drug use on the standardized scale (!" = -.03; SD = 1.30; min, max: -1.60, 

3.45). 
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Table 6.3: Descriptive statistics for the MZ and same sex DZ twins subsample. 

  N !" (%) SD Min,Max 

Dependent Variables (Wave IV) 
    

Delinquency  888 .06 .20 .00,2.80 

Drug Use  876 -.03 1.30 -1.60,3.45 

Treatment Conditions (Wave III) 
    

Intelligence  839 97.12 15.79 7,122 

Educational Attainment  871 53% .50 0,1 

Covariates (Wave I) 
    

Age 1,060 16.08 1.63 12,20 

Non-White  1,060 37% .48 0,1 

Male 1,060 52% .50 0,1 

Parent Income 803 46.76 50.22 0,800 

Parent Employment Status 912 66% .48 0,1 

Parent Education 904 49% .50 0,1 

Maternal Conflict  980 -.08 1.19 -1.35,6.36 

Paternal Conflict 738 -.11 1.25 -1.37,6.12 

School Attachment 1,040 .02 1.06 -3.89,2.06 

Social Support  1,038 8.07 1.15 3,10 

Peer Drug Use 1,023 .85 .90 0,3 

Baseline Delinquency 1,047 .53 .68 0,6 

Baseline Drug Use 1,038 .51 .45 0,2 

Notes: Drug Use, Maternal Conflict, Paternal Conflict, and School attachment were standardized to account for 

the differences in coding schemes between items. 
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Table 6.4 presents the descriptive statistics for the variables of interest within the MZ and 

different sex DZ twins. As illustrated, the average age of the Wave I participants was 16.07, 38 

percent of  the sample was of Non-White and was 51 percent of the sample was male. 

Additionally, parental respondents indicated an average household income of 46 thousand dollars 

a year (Parent Income: !" = 45.90; SD = 48.16), 64 percent said that they were employed full 

time, and 49 percent said that they completed at least some college. The participants on average 

reported a low level of maternal (!" = -.09; SD = 1.17) and paternal conflict (!" = -.08; SD = 1.31; 

Min, Max: Maternal Conflict: -1.35, 6.36; Paternal Conflict: -1.37, 6.12), and a high level of 

school attachment (!" = .01; SD =1.08; Min, Max: -4.30, 2.06). The descriptive statistics 

indicated that the majority of the sample had high levels of social support (!" = 8.06; SD =1.15), 

had approximately one close friend use drugs at the baseline (!" = .82; SD =.88), had engaged in 

low levels of delinquent behaviors at the baseline (!" = .51; SD =.67), and had reported using low 

levels drugs at the baseline (!" = .49; SD =.45). 

 In terms of the treatment conditions, the average score on the Peabody Picture 

Vocabulary Test at Wave III was approximately 97.08, and the majority of the sample had 

completed at least 1 year of college prior to the interview (educational attainment: !" = .53). At 

Wave IV, the participants on average reported low levels of delinquent activity (!" = .06; SD = 

.20) and low levels of drug use on the standardized scale (!" = -.02; SD = 1.27; min, max: -1.60, 

3.45).
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Table 6.4: Descriptive statistics for the MZ and different sex DZ twins subsample. 

  N !" (%) SD Min,Max 

Dependent Variables (Wave IV) 
    

Delinquency  1,229 .06 .20 .00,2.80 

Drug Use  1,216 -.02 1.27 -1.60,3.45 

Treatment Conditions (Wave III) 
    

Intelligence  1,144 97.08 15.79 7,122 

Educational Attainment  1,184 53% .50 0,1 

Covariates (Wave I) 
    

Age 1,461 16.07 1.62 12,20 

Non-White  1,460 38% .49 0,1 

Male 1,461 51% .50 0,1 

Parent Income 1,117 45.90 48.16 0,800 

Parent Employment Status 1,262 64% .48 0,1 

Parent Education 1,258 49% .50 0,1 

Maternal Conflict  1,361 -.09 1.17 -1.35,6.36 

Paternal Conflict 1,007 -.08 1.31 -1.37,6.12 

School Attachment 1,431 .01 1.08 -4.30,2.06 

Social Support  1,426 8.06 1.15 3,10 

Peer Drug Use 1,409 .82 .88 0,3 

Baseline Delinquency 1,443 .51 .67 0,6 

Baseline Drug Use 1,431 .49 .45 0,2 

Notes: Drug Use, Maternal Conflict, Paternal Conflict, and School attachment were standardized to account for 

the differences in coding schemes between items. 
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Table 6.5 provides the correlation matrix for the variables of interest within the MZ and 

same sex DZ twins subsample. As illustrated, delinquency (Wave IV) was associated with 

educational attainment (Wave III; r = -.08, p < .05), but not intelligence (Wave III; r = .01, p > 

.05). Furthermore, drug use (Wave IV) was positively associated with intelligence (Wave III; r = 

.11, p < .05) and not associated with educational attainment (Wave III; r = -.03, p > .05). 

Additionally, intelligence was associated with five of the covariates (Non-White: r = -.32; Male: 

r = .10; Parental Income: r = .22; Parent Education: r = .23; School attachment: r = .08; all 

associations were p < .05). Furthermore, educational attainment was associated with eight of the 

Wave I covariates (Age: r = .07; Non-White: r = -.14; Parental Income: r = .26; Parent 

Education: r = .25; School attachment: r = .11; Peer Drug Use: r = -.08; Baseline Delinquency: r 

= -.08; Baseline Drug Use: r = -.09, all associations were p < .05).  
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Table 6.5. Correlation matrix for the MZ and same sex DZ twins subsample. 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Dependent Variables (Wave IV)                 
Delinquency (1) --                
Drug Use (2) .29* --               

Treatment Conditions (Wave III)                 
Intelligence (3) .01 .11* --              
Educational Attainment (4) -.08* -.03 .40* --             

Covariates (Wave I)                 
Age (5) -.06 -.09* .01 .07* --            
Non-White (6) .07* -.09* -.32* -.14* .08* --           
Male (7) .12* .21* .10* -.04 .05 -.04 --          
Parent Income (8) -.03 -.01 .22* .26* .03 -.19* -.07 --         
Parent Employment Status (9) -.04 .02 .04 .01 .02 -.05 -.02 -.02 --        
Parent Education (10) -.02 .07* .23* .25* -.01 -.08* .09* .23* .13* --       
Maternal Conflict (11) -.03 .05 -.01 -.01 .09* .01 -.04 -.03 .05 .02 --      
Paternal Conflict (12) .01 .01 -.03 -.04 .04 .05 -.07 .01 .05 -.08* .52* --     
School Attachment (13) -.08* -.15* .08* .11* -.01 -.01 -.04 .04 -.01 -.01 -.22* -.27* --    
Social Support (14) -.03 -.10* .02 .03 -.10* .01 -.02 .03 -.04 -.01 -.52* -.55* .45* --   
Peer Drug Use (15) .01 .21* -.04 -.08* .23* -.10* .07* .08* .08* .07* .13* .13* -.23* -.20* --  
Baseline Delinquency (16) .11* .24* .01 -.08* -.07* .01 .13* -.06 -.02 .11* .18* .16* -.33* -.26* .40* -- 
Baseline Drug Use .07* .30* .03 -.09* .22* -.08* .10* .02 .06 .06 .19* .18* -.27* -.27* .59* .46* 

Notes: Pairwise deletion was used to remove cases with missing values on the specified variables. The majority of the correlation coefficients represent Pearson 
correlations. The correlation coefficients for educational attainment, non-white, male, parent employment status, and parent education point biserial coefficient. 
*p < .05 
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Table 6.6 provides the correlation matrix for the variables of interest within the MZ and 

different sex DZ twins subsample. As illustrated, delinquency (Wave IV) was associated with 

educational attainment (Wave III; r = -.10, p < .05), but not intelligence (Wave III; r = -.01, p > 

.05). Furthermore, drug use (Wave IV) was positively associated with intelligence (Wave III; r = 

.10, p < .05) and negatively associated with educational attainment (Wave III; r = -.07, p < .05). 

Additionally, intelligence was associated with four of the covariates (Non-White: r = -.34; Male: 

r = .07; Parental Income: r = .24; Parent Education: r = .25; all associations were p < .05). 

Furthermore, educational attainment was associated with eight of the Wave I covariates (Non-

White: r = -.15; Male: r = -.08; Parental Income: r = .26; Parent Education: r = .26; School 

attachment: r = .13; Peer Drug Use: r = -.10; Baseline Delinquency: r = -.12; Baseline Drug Use: 

r = -.11, all associations were p < .05).   



 106 

 

Table 6.6. Correlation matrix for the MZ and different sex DZ twin subsample. 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Dependent Variables (Wave IV)                 
Delinquency (1) --                
Drug Use (2) .29* --               

Treatment Conditions (Wave III)                 
Intelligence (3) -.01 .10* --              
Educational Attainment (4) -.10* -.07* .40* --             

Covariates (Wave I)                 
Age (5) -.05 -.05 .06 .06 --            
Non-White (6) .05 -.10* -.34* -.15* .04 --           
Male (7) .12* .20* .07* -.08* .04 -.03 --          
Parent Income (8) -.04 -.01 .24* .26* .03 -.23* -.04 --         
Parent Employment Status (9) -.02 .03 .02 .02 .02 -.02 -.02 -.01 --        
Parent Education (10) -.02 .08* .25* .26* -.02 -.13* .07* .28* .13* --       
Maternal Conflict (11) -.02 .04 -.01 -.03 .09 -.01 -.04 -.03 .03 .03 --      
Paternal Conflict (12) -.01 .06 -.01 -.06 .10 .07* -.08* .01 .03 -.02 .48* --     
School Attachment (13) -.08* -.16* .05 .13* .01 .01 -.05 .04 -.03 -.06* -.25* -.28* --    
Social Support (14) -.04 -.11* -.01 .05 -.13* .01 -.03 .03 -.04 -.03 -.53* -.57* .48* --   
Peer Drug Use (15) .02 .21* -.04 -.10* .25* -.10* .07* .06* .07* .03 .15* .17* -.22* -.22* --  
Baseline Delinquency (16) .15* .23* .01 -.12* -.04 -.01 .12* -.06* -.01 .07* .18* .18* -.31* -.28* .41* -- 
Baseline Drug Use .10* .28* .04 -.11* .25* -.10* .08* .01 .05 .04 .21* .20* -.25* -.28* .61* .47* 

Notes: Pairwise deletion was used to remove cases with missing values on the specified variables. The majority of the correlation coefficients represent Pearson 
correlations. The correlation coefficients for educational attainment, non-white, male, parent employment status, and parent education point biserial coefficient. 
*p < .05 
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6.1.3. Baseline multivariate regression models (DV: Antisocial Behavior) 

6.1.3.1. Delinquency and Drug Use Regressed on Educational Attainment 

 Table 6.7 presents the results of the bivariate and multivariate regressions models of 

delinquency (Wave IV) and drug use (Wave IV) on educational attainment (Wave III) and the 

covariates. Consistent with the correlation matrix, educational attainment (Wave III) has a 

statistically significant negative bivariate association with both delinquency (Wave IV; b = -

.029, SE = .004, b = -.061, 95%CI = -.038, -.021, p < .05) and drug use (Wave IV; b = -.175, SE 

= .022, b = -.070, 95%CI = -.218, -.132, p < .05). Nevertheless, when the covariates are 

introduced into the model, the associations between educational attainment (Wave III) and 

delinquency (Wave IV; b = -.011, SE = .006, b = -.024, 95%CI = -.023, .001, p > .05), and 

educational attainment (Wave III) and drug use (Wave IV; b = -.055, SE = .031, b = -.022, 

95%CI = -.116, -.007, p > .05) were attenuated. The multivariate associations between 

educational attainment (Wave III) and delinquency (Wave IV), and educational attainment 

(Wave III) and drug use (Wave IV) did not approach statistical significance. 
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Table 6.7: Predicting delinquency (Wave IV) and drug use (Wave IV) with educational attainment (Wave III) and covariates. 

  
DV: Delinquency  

(Wave IV) 
DV: Delinquency  

(Wave IV) 
DV: Drug Use  

(Wave IV) 
DV: Drug Use  

(Wave IV) 
b SE β 95%CI b SE β 95%CI b SE β 95%CI b SE β 95%CI 

Treatment Conditions (Wave III)                 
Educational Attainment -.029* .004 -.061 -.038,-.021 -.011 .006 -.024 -.023,.001 -.175* .022 -.070 -.218,-.132 -.055 .031 -.022 -.116,.007 

Covariates (Wave I)                 
Age -- -- -- -- -.012* .001 -.087 -.015,-.008 -- -- -- -- -.142* .009 -.196 -.159,-.124 
Non-White  -- -- -- -- .012 .006 .023 -.001,.024 -- -- -- -- -.232* .032 -.084 -.295,-.168 
Male -- -- -- -- .055* .006 .121 .044,.066 -- -- -- -- .375* .029 .152 .318,.431 
Parent Income -- -- -- -- -.001 .001 -.024 -.001,.001 -- -- -- -- .001* .001 .036 .001,.001 
Parent Employment Status -- -- -- -- -.013* .006 -.027 -.024,-.001 -- -- -- -- .040 .029 .016 -.017,.098 
Parent Education -- -- -- -- .016* .006 .035 .004,.027 -- -- -- -- .071* .030 .029 .012,.131 
Maternal Conflict  -- -- -- -- .003 .003 .017 -.003,.009 -- -- -- -- -.016 .015 -.015 -.044,.013 
Paternal Conflict -- -- -- -- -.001 .003 -.002 -.005,.005 -- -- -- -- .003 .013 .003 -.023,.028 
School Attachment -- -- -- -- -.008* .003 -.035 -.014,-.001 -- -- -- -- -.046* .016 -.038 -.077,-.014 
Social Support  -- -- -- -- .004 .004 .020 -.003,.011 -- -- -- -- -.044* .019 -.040 -.082,-.007 
Peer Drug Use -- -- -- -- .012* .004 .044 .004,.020 -- -- -- -- .090* .022 .061 .047,.133 
Baseline Delinquency -- -- -- -- .045* .005 .130 .035,.055 -- -- -- -- -- -- -- -- 
Baseline Drug Use -- -- -- -- -- -- -- -- -- -- -- -- .728* .041 .268 .648,.808 

R2 .004* .052* .005* .158* 
N 12,979 6,468 12,898 6,468 

*p < .05 
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 6.1.3.2. Delinquency and Drug Use Regressed on Intelligence51 

 Table 6.8 presents the results of the multivariate regression models of delinquency (Wave 

IV) on intelligence (Wave III) and the covariates (Wave I). Indicated by contemporary 

scholarship (e.g., Mears and Cochran, 2013), the association between intelligence and antisocial 

behavior could be linear or curvilinear. Consistent with this knowledge, three separate 

multivariate regression models were estimated and presented in Table 6.8. Model 1 of Table 6.8 

was specified with the assumption that a linear association between intelligence (Wave III) and 

delinquency (Wave IV) existed, Model 2 of Table 6.8 was specified with the assumption that a 

quadratic association (one curve) between intelligence (Wave III) and delinquency (Wave IV) 

existed, and Model 3 of Table 6.8 was specified with the assumption that a cubic association 

(two curves) between intelligence (Wave III) and delinquency (Wave IV) existed. The results 

presented in Table 6.8 suggest that intelligence (Wave III) was not associated delinquency at 

Wave IV. These results were consistent across the linear (b = -.001, SE = .001, b = -.001, 95%CI 

= -.001, .001, p > .05), quadratic (intelligence: b = .001, SE = .001, b = .016, 95%CI = -.001, 

.001, p > .05; intelligence2: b = -.001, SE = .001, b = -.017, 95%CI = -.001, .001, p > .05), and 

cubic specifications of the association between intelligence and delinquency (intelligence: b = -

.002, SE = .001, b = -.120, 95%CI = -.007, .003, p > .05; intelligence2: b = .001, SE = .001, b = 

.387, 95%CI = -.001, .001, p > .05; intelligence3: b = -.001, SE = .001, b = -.274, 95%CI = -.001, 

.001, p > .05). 

                                                
51 Due to the review of the correlation coefficients between the treatment conditions and the dependent variables, the 
results of the bivariate regression models are provided in Appendix C. The results of bivariate regression models 

(the standardized point estimate: b) are equal to that of the bivariate correlation coefficient. 
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Table 6.8: Predicting delinquency (Wave IV) with intelligence and covariates. 
DV: Delinquency 

(Wave IV) 
Model 1 Model 2 Model 3 

b SE β 95%CI b SE β 95%CI b SE β 95%CI 
Treatment Conditions (Wave III)             

Intelligence  -.001 .001 -.001 -.001,.001 .001 .001 .016 -.001,.001 -.002 .001 -.120 -.007,.003 
Intelligence2  -- -- -- -- -.001 .001 -.017 -.001,.001 .001 .001 .387 -.001,.001 
Intelligence3  -- -- -- -- -- -- -- -- -.001 .001 -.274 -.001,.001 

Covariates (Wave I)             
Age -.012* .002 -.092 -.016,-.009 -.012* .002 -.092 -.016,-.009 -.012* .002 -.092 -.016,-.009 
Non-White  .011 .007 .020 -.003,.024 .011 .007 .020 -.003,.024 .011 .007 .020 -.003,.024 
Male .056* .006 .121 .044,.067 .056* .006 .121 .044,.067 .056* .006 .121 .044,.067 
Parent Income -.001* .001 -.027 -.001,-.001 -.001* .001 -.027 -.001,-.001 -.001* .001 -.027 -.001,-.001 
Parent Employment Status -.013* .006 -.028 -.025,-.002 -.013* .006 -.028 -.025,-.002 -.013* .006 -.028 -.025,-.002 
Parent Education .014* .006 .031 .003,.026 .014* .006 .031 .003,.026 .014* .006 .031 .003,.026 
Maternal Conflict  .003 .003 .017 -.003,.009 .003 .003 .017 -.003,.009 .003 .003 .017 -.003,.009 
Paternal Conflict -.001 .003 -.002 -.005,.005 -.001 .003 -.002 -.005,.005 -.001 .003 -.002 -.005,.005 
School Attachment -.007* .003 -.034 -.014,-.001 -.007* .003 -.034 -.014,-.001 -.008* .003 -.034 -.014,-.001 
Social Support  .003 .004 .015 -.004,.011 .003 .004 .015 -.004,.011 .003 .004 .015 -.004,.011 
Peer Drug Use .014* .004 .049 .006,.021 .014* .004 .049 .006,.021 .013* .004 .049 .006,.021 
Baseline Delinquency .045* .005 .127 .035,.055 .045* .005 .127 .035,.055 .045* .005 .127 .035,.055 

R2 .05* .05* .05* 
N 6,269 6,269 6,269 

*p < .05 
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Similarly, Table 6.9 presents the results of the multivariate regression models of drug use 

(Wave IV) on the linear, quadratic, and cubic specification of intelligence (Wave III, 

respectively) and the covariates (Wave I). The results of Model 3 in Table 6.9 suggest the 

existence of a cubic association (i.e., two curves) between intelligence (Wave III) and drug use at 

Wave IV. To specify, intelligence had a negative association with drug use at Wave IV (b = -

.050, SE = .013, b = -.594, 95%CI = -.077, -.024, p > .05), intelligence2 had a positive 

association with drug use at Wave IV (b = .001, SE = .001, b = 1.619, 95%CI = .001, .001, p > 

.05), and intelligence3 had a negative association with drug use at Wave IV (b = -.001, SE = 

.001, b = -1.008, 95%CI = -.001, -.001, p > .05). All three specification of intelligence (linear, 

quadratic, and cubic) were statistically associated with drug use (Wave IV). These results 

suggest that two curves and three distinct slopes exist in the association between intelligence 

(Wave III) and drug use at Wave IV.
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Table 6.9: Predicting drug use (Wave IV) with intelligence and covariates. 
DV: Drug Use  

(Wave IV) 
Model 1 Model 2 Model 3 

b SE β 95%CI b SE β 95%CI b SE β 95%CI 
Treatment Conditions (Wave III)             

Intelligence  .003* .001 .033 .001,.005 -.008 .001 -.094 -.016,.001 -.050* .013 -.594 -.077,-.024 
Intelligence2  -- -- -- -- .001* .001 .132 .001,.001 .001* .001 1.619 .001,.001 
Intelligence3  -- -- -- -- -- -- -- -- -.001* .001 -1.008 -.001,-.001 

Covariates (Wave I)             
Age -.148* .009 -.204 -.166,-.130 -.150* .009 -.207 -.168,-.132 -.149* .009 -.205 -.166,-.131 
Non-White  -.211* .034 -.075 -.279,-.144 -.208* .034 -.074 -.276,-.141 -.200* .034 -.071 -.267,-.132 
Male .372* .029 .150 .314,.429 .369* .029 .149 .312,.427 .367* .029 .148 .309,.424 
Parent Income .001* .001 .030 .001,.001 .001* .001 .028 .001,.001 .001* .001 .028 .001,.001 
Parent Employment Status .049 .030 .019 -.010,.107 .051 .030 .020 -.008,.110 .048 .030 .019 -.011,.107 
Parent Education .044 .030 .018 -.015,.104 .036 .031 .015 -.024,.096 .035 .030 .014 -.035,.095 
Maternal Conflict  -.015 .015 -.015 -.044,.015 -.014 .015 -.014 -.044,.015 -.014 .015 -.013 -.043,.016 
Paternal Conflict .005 .013 .005 -.022,.031 .004 .013 .005 -.022,.031 .004 .013 .005 -.022,.031 
School Attachment -.050* .017 -.042 -.082,-.017 -.050* .017 -.042 -.082,-.017 -.052* .017 -.043 -.084,-.019 
Social Support  -.040* .020 -.036 -.079,-.002 -.040* .020 -.035 -.077,-.001 -.038* .020 -.034 -.077,-.001 
Peer Drug Use .092* .022 .063 .049,.136 .094* .022 .064 .051,.138 .094* .022 .064 .050,1.37 
Baseline Drug Use .736* .041 .270 .656,.817 .740* .041 .272 .660,.822 .732* .041 .269 .651,.813 

R2 .160* .160* .160* 
N 6,233 6,233 6,233 

Notes: The large β in model 3 correspond to the extremely small standard errors associated with the quadratic and cubic specification of intelligence. 
*p < .05 
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6.1.4. Exploration of social self-selection (DV: Treatment Conditions) 

Table 6.10 presents the results of the multivariate regressions models of the treatment 

conditions (i.e., intelligence and educational attainment at Wave III) on the covariates at Wave I. 

Concerning educational attainment (Wave III), the findings suggest that enrollment in college 

was predicted by eight of the covariates. Age (b = .17, SE = .02, OR = 1.19, OR95%CI = 1.15, 

1.23, p > .05), parent income (b = .02, SE = .01, OR = 1.02, OR95%CI = 1.01, 1.02, p > .05), 

parent education (b = .89, SE = .06, OR = 2.43, OR95%CI = 2.18, 2.72, p > .05), school 

attachment (b = .24, SE = .03, OR = 1.27, OR95%CI = 1.20, 1.35, p > .05), and baseline 

delinquency (b = .13, SE = .05, OR = 1.14, OR95%CI = 1.03, 1.25, p > .05) were positively 

associated with educational attainment (Wave III), while male (b = -.38, SE = .05, OR = .68, 

OR95%CI = .61, .76, p > .05), peer drug use (b = -.32, SE = .04, OR = .73, OR95%CI = .67, .78, 

p > .05), and baseline drug use (b = -.41, SE = .08, OR = .67, OR95%CI = .57, .78, p > .05) were 

negatively associated with educational attainment (Wave III). 

Regarding intelligence (Wave III), The findings suggest that levels of intelligence (Wave 

III) were predicted by seven of the covariates. Age (b = .38, SE = .11, b = .04, 95%CI = .17, .59, 

p > .05), parent income (b = .03, SE = .01, b = .10, 95%CI = .02, .03, p > .05), parent education 

(b = 5.40, SE = .36, b = .17, 95%CI = 4.44, 5.84, p > .05), and school attachment (b = .79, SE = 

.20, b = .05, 95%CI = .40, 1.18, p > .05) at Wave I had a positive association with intelligence at 

Wave III, while non-white (b = -9.26, SE = .39, b = -.27, 95%CI = -10.03, -8.50, p > .05), social 

support (b = -1.17, SE = .23, b = -.08, 95%CI = -1.61, -.72, p > .05), and peer drug use (b = -

1.28, SE = .26, b = -.07, 95%CI = -1.80, -.77, p > .05) had negative associations with the 

participants’ level of intelligence (Wave III).  

 



 114 

 

Table 6.10: Predicting intelligence and educational attainment with the covariates. 
  DV: Intelligence (Wave III) DV: Educational Attainment (Wave III) 

b SE β 95%CI b SE OR OR 95%CI 
Covariates (Wave I) 

        

Age .38* .11 .04 .17,.59 .17* .02 1.19 1.15,1.23 
Non-White  -9.26* .39 -.27 -10.03,-8.50 -.10 .06 .91 .81,1.02 
Male .45 .35 .01 -.23,1.14 -.38* .05 .68 .61,.76 
Parent Income .03* .01 .10 .02,.03 .02* .01 1.02 1.01,1.02 
Parent Employment Status -.43 .35 -.01 -1.12,.27 -.03 .05 .97 .87,1.08 
Parent Education 5.40* .36 .17 4.44,5.84 .89* .06 2.43 2.18,2.72 
Maternal Conflict  -.25 .18 -.02 -.60,.10 -.02 .03 .98 .93,1.03 
Paternal Conflict .08 .16 .01 -.23,.39 -.01 .02 .99 .95,1.04 
School Attachment .79* .20 .05 .40,1.18 .24* .03 1.27 1.20,1.35 
Social Support  -1.17* .23 -.08 -1.61,-.72 -.05 .03 .96 .89,1.02 
Peer Drug Use -1.28* .26 -.07 -1.80,-.77 -.32* .04 .73 .67,.78 
Baseline Delinquency .41 .33 .02 -.23,1.04 .13* .05 1.14 1.03,1.25 
Baseline Drug Use .13 .52 .01 -.88,1.15 -.41* .08 .67 .57,.78 

R2 .12* .22* 
N 7,126 7,356 

Notes: R2 for Educational Attainment (Wave III) model represents Nagelkerke R2 
*p < .05 
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6.1.5. Exploration of genetic self-selection (DV: Treatment Conditions) 

Figure 6.1 provides the results of the ACE decomposition model for educational 

attainment (Wave III) with the same sex MZ/DZ subsample and the different sex MZ/DZ 

subsample. The results of the same sex MZ/DZ subsample suggests that 34 percent of the 

variance in educational attainment (Wave III) is accounted for by genetic factors (a), 31 percent 

of the variance in educational attainment (Wave III) is accounted for by the shared environment 

(c), and 36 percent of the variance in educational attainment (Wave III) is accounted for by the 

non shared environment (e). The results of the different sex MZ/DZ subsample suggests that 63 

percent of the variance in educational attainment (Wave III) is accounted for by genetic factors 

(a), 0 percent of the variance in educational attainment (Wave III) is accounted for by the shared 

environment (c), and 37 percent of the variance in educational attainment (Wave III) is 

accounted for by the non shared environment (e).
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Figure 6.1: ACE Model Predicting Educational Attainment at Wave III 

 
Notes: “A” represents the variance in intelligence predicted by the additive genetic component. “C” represents the variance in intelligence 
predicted by the shared environment. “E” represents the variance in intelligence predicted by the non shared environment. 
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Figure 6.2 provides the results of the ACE decomposition model for intelligence (Wave 

III) with the same sex MZ/DZ subsample and the different sex MZ/DZ subsample. The results of 

the same sex MZ/DZ subsample suggests that 34 percent of the variance in intelligence (Wave 

III) is accounted for by genetic factors (a), 31 percent of the variance in intelligence (Wave III) is 

accounted for by the shared environment (c), and 36 percent of the variance in intelligence 

(Wave III) is accounted for by the non shared environment (e). The results of the different sex 

MZ/DZ subsample suggests that 63 percent of the variance in intelligence (Wave III) is 

accounted for by genetic factors (a), 0 percent of the variance in intelligence (Wave III) is 

accounted for by the shared environment (c), and 37 percent of the variance in intelligence 

(Wave III) is accounted for by the non shared environment (e).
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Figure 6.2: ACE Model Predicting Intelligence at Wave III 

 
Notes: “A” represents the variance in intelligence predicted by the additive genetic component. “C” represents the variance in intelligence 
predicted by the shared environment. “E” represents the variance in intelligence predicted by the non shared environment. 
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6.2. Study 2: Adjusting for Social Self-Selection with Propensity Score Matching 

6.2.1. Post-matching balancing statistics for educational attainment  

Due to the consistency regarding balance between the treatment (i.e., educational 

attainment = 1) and control groups (i.e., educational attainment = 0), post-matching descriptive 

statistics, and the post-matching bivariate associations between antisocial behavior and 

educational attainment, only the results pertaining to the cases matched with nearest neighbor 

matching with a caliper of .005 are reviewed. The post-matching statistics associated cases 

matched with nearest neighbor matching with a caliper of .05, .01, .001, and .0001 are presented 

in Appendix E and provide findings similar to that reviewed in the primary text.  

 Table 6.11 provides the post-matching covariate balance between the treatment and 

control case on educational attainment (caliper = .005). Evident by the results, the assumption of 

balance for the 13 covariates was satisfied when matching treatment and control participants 

with nearest neighbor matching ant a caliper equal to .005. While not statistically significant, the 

largest mean differences on percent bias were observed for age (Control: !" = 15.920, Treatment: 

!" = 15.862, % Bias = -3.503, t df = 4332 = -1.108, p < .05), peer drug use (Control: !" = .785, 

Treatment: !" = .812, % Bias = 3.340, t df = 4332 = 1.034, p < .05), and baseline delinquency 

(Control: !" = .517, Treatment: !" = .533, % Bias = 2.739, t df = 4332 = .855, p < .05). 
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Table 6.11: Balance statistics for participants matched with nearest neighbor matching (caliper = .005) on 
educational attainment (Wave III). 

DV: Educational Attainment 
(Wave III) 

Did Not Complete One 
Year of College (c) 

Completed One Year 
of College (t) % Bias t-value 

!" !" 
Covariates (Wave I)     

Age 15.920 15.862 -3.503 -1.108 
Non-White  .288 .292 .932 .301 
Male .505 .513 1.484 .486 
Parent Income 45.280 46.734 2.331 1.387 
Parent Employment Status .604 .599 -1.049 -.341 
Parent Education .389 .383 -1.216 -.406 
Maternal Conflict  -.055 -.081 -2.194 -.710 
Paternal Conflict -.022 -.056 -2.566 -.824 
School Attachment .056 .054 -.159 -.050 
Social Support  8.077 8.079 .250 .079 
Peer Drug Use .785 .812 3.340 1.034 
Baseline Delinquency .517 .533 2.739 .855 
Baseline Drug Use .510 .512 .455 .147 

N 2,167 2,167   

Notes: Caliper for the nearest neighbor matching was set at p < .005. (c) signifies the control cases and (t) signifies 
the treatment cases. 
* p < .05 
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Table 6.12 presents the descriptive statistics for the pre-matching sample, the post-

matching subsample, and a mean difference comparison (i.e., independent samples t-test) 

between the two samples on the dependents variables, educational attainment, and the 13 

covariates. The mean values for the post-matching subsample differed from the mean value for 

the pre- matching sample on seven of the 16 variables. Specifically, it was observed that the 

post-matching subsample had lower average scores on educational attainment (Post-matching: !" 

= .500, Pre-matching: !" = .620, t df = 9147 = -12.246, p < .05), parent income (Post-matching: !" = 

46.007, Pre-matching: !" = 55.084, t df = 10404 = -10.340, p < .05), and parent education (Post-

matching: !" = .386, Pre-matching: !" = .480, t df = 9299 = -9.662, p < .05) than the pre-matching 

sample. Furthermore, the post-matching subsample had higher average scores on non-White 

(Post-matching: !" = .290, Pre-matching: !" = .266, t df = 9168 = 2.662, p < .05), male (Post-

matching: !" = .509, Pre-matching: !" = .467, t df = 9311 = 4.219, p < .05), peer drug use (Post-

matching: !" = .798, Pre-matching: !" = .759, t df = 9311 = 2.306, p < .05), and baseline drug use 

(Post-matching: !" = .511, Pre-matching: !" = .490, t df = 9404 = 2.392, p < .05) than the pre-

matching sample  
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Table 6.12: Descriptive statistics for the matched sample (caliper = .005). 
  Pre-matching Sample Post-matching Sample t-value !" !" 

Dependent Variables (Wave IV) 
   

Delinquency  .065 .071 1.292 
Drug Use  .029 .056 1.037 

Treatment Conditions (Wave III) 
   

Educational Attainment  .620 .500 -12.246* 
Covariates (Wave I) 

   

Age 15.918 15.891 -.802 
Non-White  .266 .290 2.662* 
Male .467 .509 4.219* 
Parent Income 55.084 46.007 -10.340* 
Parent Employment Status .611 .602 -.956 
Parent Education .480 .386 -9.662* 
Maternal Conflict  -.069 -.068 .049 
Paternal Conflict -.056 -.039 .625 
School Attachment .093 .055 -1.89 
Social Support  8.089 8.078 -.485 
Peer Drug Use .759 .798 2.306* 
Baseline Delinquency .521 .525 .292 
Baseline Drug Use .490 .511 2.392* 

N 6,202 4,334   
Notes: Caliper for the nearest neighbor matching was set at p < .005. Pre-matching sample designates the cases 
remaining after listwise deletion for the model. The sample size for delinquency (Wave IV) was 3,742 and the 
sample size for Drug use (Wave IV) was 3,728 on the matched sample.  
* p < .05 
6.2.2. Post-matching balancing statistics for intelligence 

 In review, due to the continuous nature of Intelligence (Wave III) generalized propensity 

score matching (GPS) was used to create a subsample of cases in which the bivariate association 

between antisocial behavior and educational attainment could be estimated unconfounded by the 

13 covariates. Table 6.13 presents the post-matching balancing results of the GPS matches. The 

!"∆ represent the mean difference between the specified percentile with a specified GPS score 

and the cases outside of the specified percentile with the same GPS score. All of the mean 

differences were than averaged to create an average mean difference, which is then used to 

estimate an adjusted t-statistic. As such, the assessment of balance for each covariate comparison 

for the post-matching sample must be improved beyond statistical significance (i.e., t-value must 

be below 1.96). Due to the difficulties of satisfying this criterion, scholars often evaluate the 



 123 

balance for each covariate comparison as the percent reduction in bias from the pre-matching 

sample to the post-matching sample (Bia and Mattei, 2008; Mears and Cochran, 2013).  

 Table 6.13 presents the balancing statistics for the pre-matching sample and the 

post-matching sample derived from the generalized propensity score matching. As suggested by 

the overall evaluation of balance, the matches derived from the GPS analysis had substantive 

deviations from balance for the 13 covariates beyond the p < .01 level. Notably, although the 

overall evaluation of balance suggested substantive deviations from balance, the percent 

reduction in bias analyses suggested that the post-matching sample consistently reduced bias 

across the majority of the comparisons. For a full interpretation of the results please see 

Appendix G.  
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Table 6.13. Balancing statistics for the generalized propensity score match. 
DV: Intelligence  

(Range per Percentile) 
Pre-matching Post- matching % Reduction  

in Bias !"∆ t-value !"∆ t-value 
10th Percentile (7,79) 

     

Age -.147 -2.989* -.079 -2.334* -46.353 
Non-White  -.358 -28.131* -.022 -5.093* -93.858 
Male .042 3.122* .004 .412 -90.588 
Parent Income 17.240 10.057* 3.943 3.340* -77.129 
Parent Employment Status .058 3.847* .006 .640 -89.646 
Parent Education .201 14.847* .043 4.422* -78.622 
Maternal Conflict  .022 .623 -.021 -.867 -5.628 
Paternal Conflict -.029 -.608 -.049 -1.826 71.305 
School Attachment .027 .885 -.018 -.881 -32.771 
Social Support  -.081 -2.226* -.003 -.133 -96.291 
Peer Drug Use .094 3.935* .043 2.639* -54.316 
Baseline Delinquency .027 1.429 .010 .767 -63.451 
Baseline Drug Use .111 9.032* .028 3.122* -74.761 

20th Percentile (80,87) 
     

Age .129 2.787* .025 .916 -80.680 
Non-White  -.196 -15.114* .004 1.269 -97.961 
Male .062 4.829* .011 1.356 -82.373 
Parent Income 14.068 12.251* 3.243 3.416* -76.948 
Parent Employment Status .018 1.261 .003 .362 -82.933 
Parent Education .174 13.352* .042 5.517* -75.926 
Maternal Conflict  .094 2.737* .014 .711 -85.078 
Paternal Conflict .070 1.578 .034 1.577 -51.500 
School Attachment .054 1.868 .017 1.088 -68.611 
Social Support  -.082 -2.570* -.002 -.140 -97.570 
Peer Drug Use -.045 -1.962* -.006 -.474 -86.791 
Baseline Delinquency .036 2.063* .009 .838 -74.844 
Baseline Drug Use .022 1.871 .003 .423 -86.255 

30th Percentile (88,91) 
     

Age -.069 -1.502 .005 .209 -92.745 
Non-White -.103 -7.701* -.002 -.709 -98.050 
Male .002 .182 .003 .460 23.381 
Parent Income 8.407 7.344* 2.145 2.509* -74.487 
Parent Employment Status -.013 -.932 -.003 -.415 -77.040 
Parent Education .085 6.057* .008 1.261 -90.608 
Maternal Conflict  -.035 -.940 -.022 -1.218 -36.871 
Paternal Conflict -.027 -.576 -.033 -1.677 23.425 
School Attachment .118 3.849* .033 2.199* -72.074 
Social Support  .053 1.603 .039 2.403* -26.184 
Peer Drug Use -.145 -5.905* -.039 -3.236* -73.131 
Baseline Delinquency -.021 -1.161 -.007 -.784 -67.433 
Baseline Drug Use -.053 -4.224* -.025 -3.763* -52.443 

40th Percentile (92,96) 
     

Age .035 .601 .059 2.150* 70.127 
Non-White -.040 -2.589* .010 2.533* -74.977 
Male -.013 -.844 0.00 .554 -69.825 
Parent Income 9.081 8.052* 2.833 3.014* -68.804 
Parent Employment Status .003 .173 -.001 -.016 -64.868 
Parent Education .099 6.109* .017 2.509* -82.781 
Maternal Conflict  .060 1.461 .034 1.707 -43.345 
Paternal Conflict .006 .127 -.020 -.918 209.265 
School Attachment .062 1.813 .002 .108 -96.787 
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Table 6.13. Balancing statistics for the generalized propensity score match. 
DV: Intelligence  

(Range per Percentile) 
Pre-matching Post- matching % Reduction  

in Bias !"∆ t-value !"∆ t-value 
Social Support  .011 .284 -.012 -.678 10.436 
Peer Drug Use -.042 -1.449 -.011 -.844 -73.759 
Baseline Delinquency -.019 -.825 .001 .121 -94.820 
Baseline Drug Use -.023 -1.591 -.012 -1.569 -48.848 

50th Percentile (97,103) 
     

Age .188 4.391* .087 4.259* -53.812 
Non-White .073 6.362* .004 .864 -94.519 
Male -.009 -.771 .004 .741 -57.885 
Parent Income 2.690 2.081* .957 1.380 -64.429 
Parent Employment Status -.014 -1.126 -.003 -.490 -78.946 
Parent Education .047 3.655* .010 1.869 -78.804 
Maternal Conflict  .001 .041 .007 .451 427.321 
Paternal Conflict -.016 -.400 .010 .638 -38.065 
School Attachment -.009 -.321 -.010 -.813 17.196 
Social Support  .065 2.195* .011 .829 -83.187 
Peer Drug Use -.060 -2.663* -.026 -2.605* -56.729 
Baseline Delinquency -.039 -2.245* -.016 -2.042* -59.350 
Baseline Drug Use -.052 -4.420* -.021 -3.762* -59.891 

60th Percentile (104,106) 
     

Age .122 2.781* .018 .870 -85.203 
Non-White .142 12.592* .015 3.674* -89.438 
Male -.057 -4.423* -.011 -1.887 -80.654 
Parent Income -2.774 -2.558* .324 .474 -88.321 
Parent Employment Status -.015 -1.121 -.003 -.538 -79.796 
Parent Education -.054 -3.961* -.003 -.633 -94.483 
Maternal Conflict  -.024 -.724 -.014 -.970 -42.399 
Paternal Conflict .044 1.103 -.001 -.004 -97.706 
School Attachment -.063 -2.374* -.007 -.589 -88.890 
Social Support  .006 .188 -.007 -.554 23.982 
Peer Drug Use .018 .802 .005 .501 -72.419 
Baseline Delinquency -.016 -.897 -.006 -.712 -62.595 
Baseline Drug Use -.031 -2.473* -.006 -1.106 -80.407 

70th Percentile (107,108) 
     

Age .083 1.730 .018 .786 -78.300 
Non-White .122 9.900* .012 2.612* -90.182 
Male -.011 -.803 -.006 -.989 -46.161 
Parent Income -6.774 -4.115* -1.254 -1.701 -81.487 
Parent Employment Status -.009 -.653 .003 .395 -68.127 
Parent Education -.086 -5.773* -.002 -.407 -97.678 
Maternal Conflict  -.040 -1.096 -.005 -.332 -87.583 
Paternal Conflict .044 1.027 .028 1.606 -36.386 
School Attachment -.036 -1.232 .002 .164 -94.479 
Social Support  -.023 -.701 -.011 -.783 -52.076 
Peer Drug Use .059 2.461* -.001 .002 -98.310 
Baseline Delinquency -.015 -.801 -.013 -1.543 -15.142 
Baseline Drug Use .019 1.525 .005 .782 -74.330 

80th Percentile (109,111) 
     

Age -.031 -.511 -.027 -.967 -11.620 
Non-White .079 5.018* .001 .235 -98.730 
Male .013 .741 .008 .979 -36.580 
Parent Income -5.477 -3.494* -.567 -.650 -89.648 
Parent Employment Status -.054 -3.132* -.018 -2.285* -66.465 
Parent Education -.119 -6.548* -.009 -1.441 -92.416 
Maternal Conflict  -.035 -.778 .006 .290 -82.839 
Paternal Conflict -.006 -.110 -.004 -.189 -32.539 
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Table 6.13. Balancing statistics for the generalized propensity score match. 
DV: Intelligence  

(Range per Percentile) 
Pre-matching Post- matching % Reduction  

in Bias !"∆ t-value !"∆ t-value 
School Attachment -.074 -2.060* -.011 -.645 -85.202 
Social Support  -.006 -.164 -.011 -.618 70.226 
Peer Drug Use .007 .219 .008 .570 16.903 
Baseline Delinquency .004 .192 .011 1.051 153.450 
Baseline Drug Use -.025 -1.540 -.004 -.553 -83.987 

90th Percentile (112,116) 
     

Age -.182 -4.157* -.079 -3.619* -56.500 
Non-White .102 8.560* -.006 -1.210 -94.107 
Male .013 .994 .009 1.368 -30.538 
Parent Income -11.567 -5.863* -3.169 -5.093* -72.604 
Parent Employment Status .004 .294 .001 .181 -74.975 
Parent Education -.150 -10.853* -.023 -4.118* -84.682 
Maternal Conflict  .002 .053 -.014 -.923 690.203 
Paternal Conflict -.087 -2.074* -.045 -2.620* -48.251 
School Attachment -.056 -2.030* .011 .840 -80.325 
Social Support  .007 .248 .014 1.007 93.960 
Peer Drug Use .040 1.741 .001 .019 -97.516 
Baseline Delinquency .012 .684 .006 .696 -50.481 
Baseline Drug Use -.001 -.073 .010 1.739 977.470 

99th Percentile (117,122) 
     

Age -.214 -4.286* -.040 -1.590 -81.272 
Non-White .204 17.262* .011 1.715 -94.604 
Male -.045 -3.040* -.006 -.857 -86.681 
Parent Income -23.696 -9.430* -2.995 -5.079* -87.361 
Parent Employment Status .015 .991 .015 2.070* -1.091 
Parent Education -.230 -15.348* -.013 -2.188* -94.347 
Maternal Conflict  -.056 -1.431 -.003 -.142 -94.610 
Paternal Conflict .001 .031 -.004 -.216 199.531 
School Attachment -.034 -1.106 .001 .072 -97.037 
Social Support  .043 1.359 .022 1.388 -48.609 
Peer Drug Use .103 4.119* .023 1.825 -77.714 
Baseline Delinquency .043 2.3088* .013 1.399 -69.800 
Baseline Drug Use .045 3.196 .019 2.787* -57.916 

* p < .05 
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6.2.3. Post-matching bivariate associations between the dependent variables and the treatment 

conditions.  

 Table 6.14 provides the bivariate regression associations between educational attainment 

(Wave III)  and delinquency (Wave IV), and educational attainment (Wave III) and drug use 

(Wave IV) estimated on the post-matching subsample.52 The findings of the bivariate OLS 

regression model suggested that the association between educational attainment (Wave III) and 

delinquency (Wave IV) has a -.005 slope (b = -.005, SE = .007, b = -.011, 95%CI = -.020, .010), 

which was not statistically different from the null hypothesis (i.e., a slope of 0). Concerning drug 

use, the bivariate OLS regression model suggested that the association between educational 

attainment (Wave III) and drug use (Wave IV) has a -.090 slope (b = -.090, SE = .041, b = -.036, 

95%CI = -.171, -.009), which was statistically significant at the p < .05 level.  

Table 6.15 provides the bivariate associations between intelligence (Wave III) and 

delinquency (Wave IV) estimated on the post-GPS matching subsample. The results of Model 1 

(specifying a linear association between intelligence and delinquency) suggested that the 

association between intelligence (Wave III) and delinquency (Wave IV) has a -.001 slope (b = -

.001, SE = .001, 95%CI = -.001, .001), which was not statistically different from the null 

hypothesis. Similarly, the results of the quadratic specification suggested that the association 

between intelligence (Wave III) and delinquency (Wave IV) has a .001 slope (b = .001, SE = 

.001, 95%CI = -.002, .002) and the association between intelligence2 (Wave III) and delinquency 

(Wave IV) has a -.001 slope (b = -.001, SE = .001, 95%CI = -.001, .001), which were not 

statistically different from the null hypothesis. The results of the cubic specification indicated 

that the association between intelligence (Wave III) and delinquency (Wave IV) has a -.007 

slope (b = -.007, SE = .003, 95%CI = -.013, .001), the association between intelligence2 (Wave 

                                                
52 Treatment and control cases were matched using nearest neighbor matching with a caliper of .005. 
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III) and delinquency (Wave IV) has a .001 slope (b = .001, SE = .001, 95%CI = .001, .001), and 

the association between intelligence3 (Wave III) and delinquency (Wave IV) has a -.001 slope (b 

= -.001, SE = .001, 95%CI = -.001, -.001). The point estimates pertaining to the associations 

between intelligence2 (Wave III) and delinquency (Wave IV), and intelligence3 (Wave III) and 

delinquency (Wave IV) were statistically significant at the p < .05 level.  

Table 6.16 provides the bivariate associations between intelligence (Wave III) and drug 

use (Wave IV) estimated on the post-GPS matching subsample. The results of Model 1 

(specifying a linear association between intelligence and drug use) suggested that the association 

between intelligence (Wave III) and drug use (Wave IV) has a .003 slope (b = .003, SE = .001, 

95%CI = .001, .005), which was statistically significant at the p < .05 level. The results of the 

quadratic specification suggested that the association between intelligence (Wave III) and drug 

use (Wave IV) has a -.011 slope (b = -.011, SE = .006, 95%CI = -.022, .001) and the association 

between intelligence2 (Wave III) and drug use (Wave IV) has a .001 slope (b = .001, SE = .001, 

95%CI = .001, .001). For Model 2, the bivariate association between intelligence (Wave III) and 

drug use (Wave IV) was not statistically significant, while the bivariate association between 

intelligence2 (Wave III) and drug use (Wave IV) was statistically significant at the p < .05 level. 

The results of the cubic specification indicated that the association between intelligence (Wave 

III) and drug use (Wave IV) has a -.084 slope (b = -.084, SE = .018, 95%CI = -.120, -.048), the 

association between intelligence2 (Wave III) and drug use (Wave IV) has a .001 slope (b = .001, 

SE = .001, 95%CI = .001, .002), and the association between intelligence3 (Wave III) and drug 

use (Wave IV) has a -.001 slope (b = -.001, SE = .001, 95%CI = -.001, -.001). The point 

estimates pertaining to the associations between intelligence (Wave III) and drug use (Wave IV), 

intelligence2 (Wave III) and drug use (Wave IV), and intelligence3 (Wave III) and drug use 

(Wave IV) were statistically significant at the p < .05 level.  
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Table 6.14: Predicting delinquency (Wave IV) and drug use (Wave IV) with educational attainment (Wave III) after nearest neighbor matching. 

  DV: Delinquency (Wave IV) DV: Drug Use (Wave IV) 
b SE β 95%CI b SE β 95%CI 

Treatment Conditions (Wave III)         
Educational Attainment  -.005 .007 -.011 -.020,.010 -.090* .041 -.036 -.171,-.009 

R2 -.001 .001 
N 3,742 3,728 

Notes:  Caliper for the nearest neighbor matching was set at p = .005. 
*p < .05 
 

Table 6.15: Predicting delinquency (Wave IV) with intelligence (Wave III) post generalized propensity score matching. 
DV: Delinquency  

(Wave IV) 
Model 1 Model 2 Model 3 

b SE 95%CI b SE 95%CI b SE 95%CI 
Treatment Conditions (Wave III)          

Intelligence  -.001 .001 -.001,.001 .001 .001 -.002,.002 -.007 .003 -.013,.001 
Intelligence2  -- -- -- -.001 .001 -.001,.001 .001* .001 .001,.001 
Intelligence3  -- -- -- -- -- -- -.001* .001 -.001,-.001 

R2 .001 .001 .001 
N 6,230 6,230 6,230 

Notes: The balancing analysis indicated that the generalized propensity score matching achieved balance at the p < .01 level. 
*p < .05 
 

Table 6.16: Predicting drug use (Wave IV) with intelligence post generalized propensity score matching. 
DV: Drug use  

(Wave IV) 
Model 1 Model 2 Model 3 

b SE 95%CI b SE 95%CI b SE 95%CI 
Treatment Conditions (Wave III)          

Intelligence  .003* .001 .001,.005 -.011 .006 -.022,.001 -.084* .018 -.120,-.048 
Intelligence2  -- -- -- .001* .001 .001,.001 .001* .001 .001,.002 
Intelligence3  -- -- -- -- -- -- -.001* .001 -.001,.-.001 

R2 .005* .007* .009* 
N 6,213 6,213 6,213 

Notes: The balancing analysis indicated that the generalized propensity score matching achieved balance at the p < .01 level. 
*p < .05 
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6.3 Study 3: Adjusting for Genetic Self-Selection with MZ Difference Scores 

6.3.1. Descriptive statistics and cross-twin correlations: MZ twin subsample.  

 Table 6.17 provides the descriptive statistics for the MZ twin subsample and a cross twin 

mean difference comparison. To reiterate, only identical twins (MZ twins) were included in the 

subsample and the two twins within a twin pair were randomly assigned the designation Twin 1 

or Twin 2. As indicated by the cross twin mean difference comparison, the average score for 

Twin 1 cases across the 17 variables of interest did not significantly differ from the average score 

for Twin 2 cases. Furthermore, while the largest mean difference (i.e., maternal conflict) did 

approach statistical significance (t-value = 1.90), the next largest mean difference had a t-value 

of -1.28. 
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Table 6.17: Descriptive statistics for the MZ Twin Sample. 

  Twin 1 Twin 2 t-value 
N !" SD Min,Max  N !" SD Min,Max 

Dependent Variables (Wave IV) 
         

Delinquency  235 .03 .12 .00,1.20 240 .05 .17 .00,1.40 -1.28 
Drug Use  235 -.14 1.17 -1.60,3.45 237 -.24 1.20 -1.60,3.45 .96 

Treatment Conditions (Wave III) 
         

Intelligence  230 96.29 15.84 8,122 222 97.55 16.88 7,122 -.81 
Educational Attainment  238 .53 .50 0,1 228 .54 .50 0,1 -.13 

Covariates (Wave I) 
         

Maternal Conflict  257 .02 1.17 -1.35,4.23 255 -.17 1.06 -1.35,4.18 1.90 
Paternal Conflict 199 -.13 1.20 -1.37,4.41 200 -.22 1.20 -1.37,4.72 .79 
School Attachment 276 .04 1.10 -3.56,2.06 278 .07 1.12 -3.89,2.06 -.31 
Social Support  275 8.06 1.20 3.75,10.00 278 8.12 1.17 3.75,10.00 -.62 
Peer Drug Use 275 .88 .90 0,3 273 .82 .91 0,3 .72 
Baseline Delinquency 280 .56 .74 .00,4.86 280 .49 .72 .00,6.00 1.12 
Baseline Drug Use 276 .49 .45 .00,1.67 277 .48 .43 .00,2.00 .05 

Notes: Drug Use, Maternal Conflict, Paternal Conflict, and School attachment were standardized to account for the differences in coding schemes between items. 
No between twin differences were expected for Age, Non-White, Male, Parent Income, Parent Employment Status, and Parent Education because these 
mechanisms are encompassed within the shared environment. 
*p < .05 
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 Table 6.18 presents the cross-twin correlations (i.e., the correlation between Twin 1 and 

Twin 2) on the 17 variables of interest. In reference to the dependent variables, it can be 

observed that the scores for Twin 1 and the scores for Twin 2 were correlated at .324 (95%CI = 

.199, .439, p < .05) for delinquency (Wave IV) and .445 (95%CI = .330, .547, p < .05) for drug 

use (Wave IV). For the treatment conditions of interest, it can be observed that the scores for 

Twin 1 and the scores for Twin 2 were correlated at .704 (95%CI = .629, .767, p < .05) for 

intelligence (Wave III) and .602 (95%CI = .510, .681, p < .05) for educational attainment (Wave 

III). As indicated by the cross-twin correlations for the covariates, the scores for Twin 1 and the 

scores for Twin 2 were perfectly correlated on five of the 13 covariates. Specifically, the scores 

for Twin 1 and Twin 2 were perfectly correlated for age (r = 1.00, 95%CI = 1.00, 1.00, p < .05), 

male (r = 1.00, 95%CI = 1.00, 1.00, p < .05), parent income (r = 1.00, 95%CI = 1.00, 1.00, p < 

.05), parent employment status (r = 1.00, 95%CI = 1.00, 1.00, p < .05), and parent education (r = 

1.00, 95%CI = 1.00, 1.00, p < .05). Due to the perfect cross-twin correlations on the specified 

variables, a MZ difference score could not be created of age, male, parent income, parent 

employment status, and parent education.  

The next highest cross-twin correlation was observed for non-White (r = .893, 95%CI = 

.867, .914, p < .05). A MZ difference score was not created for non-White, since the disjunction 

between the scores for Twin 1 and the scores for Twin 2 on non-White were likely due to 

measurement error, since it is unlikely for identical twins to differ on race. The cross-twin 

correlations concerning maternal conflict (r = .473, 95%CI = .371, .564, p < .05), paternal 

conflict (r = .554, 95%CI = .448, .645, p < .05), school attachment (r = .475, 95%CI = .377, 

.561, p < .05), social support (r = .503, 95%CI = .409, .587, p < .05), peer drug use (r = .658, 

95%CI = .585, .721, p < .05), baseline delinquency (r = .450, 95%CI = .351, .539, p < .05), and 
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baseline drug use (r = .629, 95%CI = .552, .696, p < .05) permitted the creation of MZ difference 

scores for the specified covariates.  

 

Table 6.18. Cross-MZ twin correlations. 

  Npairs r 95%CI 

Dependent Variables (Wave IV) 
   

Delinquency  235 .324* .199,.439 
Drug Use  235 .445* .330,.547 

Treatment Conditions (Wave III) 
   

Intelligence  222 .704* .629,.767 
Educational Attainment  228 .602* .510,.681 

Covariates (Wave I) 
   

Maternal Conflict  255 .473* .371,.564 
Paternal Conflict 199 .554* .448,.645 
School Attachment 276 .475* .377,.561 
Social Support  275 .503* .409,.587 
Peer Drug Use 273 .658* .585,.721 
Baseline Delinquency 280 .450* .351,.539 
Baseline Drug Use 276 .629* .552,.696 

Notes: Drug Use, Maternal Conflict, Paternal Conflict, and School attachment were standardized to account for the 
differences in coding schemes between items. No between twin differences were expected for Age, Non-White, 
Male, Parent Income, Parent Employment Status, and Parent Education because these mechanisms are encompassed 
within the shared environment. 
*p < .05 
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6.3.2. Descriptive statistics for MZ difference scores.  

 Table 6.19 provides the descriptive statistics for the MZ difference scores on the 

covariates where the scores for Twin 1 were not perfectly correlated with the scores for Twin 2.53 

Concerning the dependent variables, it can be observed that the average difference between Twin 

1 and Twin 2 on delinquency (Wave IV) was approximately -.004 (min, max: -1.200, 1.200), and 

the average difference between Twin 1 and Twin 2 on drug use (Wave IV) was approximately 

.163 (min, max: -4.002, 4.002). In reference to the treatment conditions, it can be observed that 

the average difference between Twin 1 and Twin 2 on intelligence (Wave III) was approximately 

-.855 (min, max: -52, 99), and the average difference on educational attainment (Wave III) was 

.005 (min, max: -1, 1). Regarding the covariates, it can be observed that average difference 

between Twin 1 and Twin 2 was .170 for maternal conflict (min, max: -3.115, 5.576), for 

paternal conflict (min, max: -4.417, 3.183), -.027 for school attachment (min, max: -4.085, 

3.697), -.065 for social support (min, max: -3.750, 4.000), .053 for peer drug use (min, max: -

2.667, 2.667), .070 for baseline delinquency (min, max: -5.571, 4.286), and .005 for baseline 

drug use (min, max: -1.333, 1.667).

                                                
53 An MZ difference score was not created for non-White, since the disjunction between the scores for Twin 1 and 
the scores for Twin 2 were likely a function of measurement error.   
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Table 6.19: Descriptive statistics for the MZ difference scores.  
Npairs (NIn) !" SD Min,Max  

Dependent Variables (Wave IV) 
    

Delinquency  215 (430) -.004 .172 -1.200,1.200 
Drug Use  212 (424) .163 1.221 -4.002,4.002 

Treatment Conditions (Wave III) 
    

Intelligence  209 (418) -.885 12.833 -52,99 
Educational Attainment  217 (434) -.005 .445 -1,1 

Covariates (Wave I) 
    

Maternal Conflict  250 (500) .170 1.142 -3.115,5.576 
Paternal Conflict 193 (386) .071 1.121 -4.417,3.183 
School Attachment 274 (548) -.027 1.138 -4.085,3.697 
Social Support  273 (546) -.065 1.182 -3.750,4.000 
Peer Drug Use 268 (536) .053 .747 -2.667,2.667 
Baseline Delinquency 279 (558) .070 .770 -5.571,4.286 
Baseline Drug Use 272 (544) -.005 .380 -1.333,1.667 

Notes: Difference scores were only created for the variables in which the correlation between the MZ twins was below 1.00. 
“NIn” = Number of individuals. 
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6.3.3. Multivariate models of the MZ difference scores for the dependent variables on the MZ 

difference scores for the treatment variables 

Table 6.20 presents the bivariate and multivariate OLS regression models, where the MZ 

difference score for dependent variables (Wave IV) were regressed on the MZ difference score 

for educational attainment (Wave III) and the covariates. The results of the bivariate model 

where the MZ difference score for delinquency (Wave IV) was regressed on the MZ difference 

score for educational attainment (Wave III) suggested that the association between educational 

attainment (Wave III) and delinquency (Wave IV) has a -.016 slope (b = -.016, SE = .034, b = -

.040, 95%CI = -.085, .053, p > .05). Consistent with the bivariate results, the multivariate 

analysis suggested that the association between educational attainment (Wave III) and 

delinquency (Wave IV) has a .001 slope (b = .001, SE = .019, b = .001, 95%CI = -.037, .038, p > 

.05). Neither the bivariate or multivariate associations reached statistical significance. In 

reference to drug use (Wave IV), the bivariate model suggested that the association between 

educational attainment (Wave III) and drug use (Wave IV) has a -.021 slope (b = -.021, SE = 

.186, b = -.008, 95%CI = -.388, .345, p > .05). Similarly, the multivariate analysis suggested that 

the association between educational attainment (Wave III) and delinquency (Wave IV) has a -

.100 slope (b = -.100, SE = .302, b = -.032, 95%CI = -.699, .499, p > .05). Again, the bivariate 

and the multivariate associations between educational attainment (Wave III) and drug use (Wave 

IV) did not reach statistical significance. 
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Table 6.20: Predicting the MZ difference scores for delinquency (Wave IV) and drug use (Wave IV) with the MZ difference scores for educational 
attainment (Wave III) and covariates. 

  
DV: Delinquency  

(Wave IV) 
DV: Delinquency  

(Wave IV) 
DV: Drug Use  

(Wave IV) 
DV: Drug Use  

(Wave IV) 
b SE β 95%CI b SE β 95%CI b SE β 95%CI b SE β 95%CI 

Treatment Conditions (Wave III)                 
Educational Attainment  -.016 .034 -.040 -.085,.053 .001 .019 .001 -.037,.038 -.021 .186 -.008 -.388,.345 -.100 .302 -.032 -.699,.499 

Covariates (Wave I)                 
Maternal Conflict  -- -- -- -- -.005 .007 -.035 -.020,.009 -- -- -- -- .014 .106 .012 -.196,.224 
Paternal Conflict -- -- -- -- .009 .019 .060 -.029,.046 -- -- -- -- -.196 .121 -.162 -.437,.044 
School Attachment -- -- -- -- .020 .014 .120 -.008,.047 -- -- -- -- -.155 .147 -.117 -.447,.136 
Social Support  -- -- -- -- -.003 .009 -.023 -.022,.016 -- -- -- -- -.136 .125 -.122 -.383,.111 
Peer Drug Use -- -- -- -- -.013 .012 -.053 -.037,.011 -- -- -- -- .113 .240 .058 -.364,.589 
Baseline Delinquency -- -- -- -- .055* .027 .180 .001,.109 -- -- -- -- -- -- -- -- 
Baseline Drug Use -- -- -- -- -- -- -- -- -- -- -- -- .843* .389 .239 .072,1.615 

R2 -.004 -.033 -.005 .053 
Npairs (NIn) 187 (374) 111 (222) 184 (368) 101 (202) 

Notes: Difference scores were only created for the variables in which the correlation between the MZ twins was below 1.00. “NIn” = Number of individuals. 
*p < .05 
 



 138 

 
 Table 6.21 provides the results of the multivariate OLS regression models, where the MZ 

difference score for delinquency (Wave IV) was regressed on the MZ difference score for 

intelligence (Wave III) and the covariates. The results of Model 1 (specifying a linear association 

between intelligence and delinquency) suggested that the association between intelligence (Wave 

III) and delinquency (Wave IV) has a -.002 slope (b = -.002, SE = .002, b = -.107, 95%CI = -

.0056 .003, p > .05). Similarly, the results of the quadratic specification suggested that the 

association between intelligence (Wave III) and delinquency (Wave IV) has a -.002 slope (b = -

.002, SE = .004, b = -.127, 95%CI = -.010, .006, p > .05) and the association between 

intelligence2 (Wave III) and delinquency (Wave IV) has a -.001 slope (b = -.001, SE = .001, b = 

-.039, 95%CI = -.001, .001, p > .05). The results of the cubic specification indicated that the 

association between intelligence (Wave III) and delinquency (Wave IV) has a -.002 slope (b = -

.002, SE = .002, b = -.127, 95%CI = -.007, .003, p > .05), the association between intelligence2 

(Wave III) and delinquency (Wave IV) has a -.001 slope (b = -.001, SE = .001, b = -.039, 95%CI 

= -.001, .001, p > .05), and the association between intelligence3 (Wave III) and delinquency 

(Wave IV) has a .001 slope (b = .001, SE = .001, b = .001, 95%CI = -.001, .001, p > .05). None 

of the observed associations presented in Table 6.21 reached statistical significance. 
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Table 6.21: Predicting the MZ difference score for delinquency (Wave IV) with the MZ difference scores for intelligence (Wave III) and 
covariates. 

DV: Delinquency  
(Wave IV) 

Model 1 Model 2 Model 3 
b SE β 95%CI b SE β 95%CI b SE β 95%CI 

Treatment Conditions (Wave III)             
Intelligence  -.002 .002 -.107 -.006,.003 -.002 .004 -.127 -.010,.006 -.002 .002 -.127 -.007,.003 
Intelligence2  -- -- -- -- -.001 .001 -.039 -.001,.001 -.001 .001 -.039 -.001,.001 
Intelligence3  -- -- -- -- -- -- -- -- .001 .001 .001 -.001,.001 

Covariates (Wave I)             
Maternal Conflict  -.004 .006 -.026 -.016,.009 -.005 .010 -.031 -.025,.016 -.005 .006 -.031 -.016,.007 
Paternal Conflict .007 .019 .049 -.031,.045 .008 .024 .056 -.039,.056 .008 .023 .056 -.037,.053 
School Attachment .023 .016 .130 -.009,.054 .023 .015 .133 -.008,.054 .023 .015 .133 -.008,.054 
Social Support  -.001 .011 -.009 -.022,.020 -.001 .010 -.010 -.021,.018 -.001 .010 -.010 -.021,.018 
Peer Drug Use -.008 .013 -.032 -.033,.017 -.009 .012 -.035 -.033,.016 -.009 .013 -.035 -.033,.016 
Baseline Delinquency .055 .029 .178 -.002,.111 .053 .031 .173 -.008,.114 .053 .030 .173 -.006,.112 

R2 -.023 -.032 -.043 
Npairs (NIn) 106 (212) 106 (212) 106 (212) 

Notes: Difference scores were only created for the variables in which the correlation between the MZ twins was below 1.00. “NIn” = Number of individuals. 
*p < .05 
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Table 6.22 provides the results of the multivariate OLS regression models, where the MZ 

difference score for drug use (Wave IV) was regressed on the MZ difference score for 

intelligence (Wave III) and the covariates. The results of Model 1 (specifying a linear association 

between intelligence and drug use) suggested that the association between intelligence (Wave 

III) and drug use (Wave IV) has a -.021 slope (b = -.021, SE = .012, b = -.169, 95%CI = -.045, 

.003, p > .05). Similarly, the results of the quadratic specification suggested that the association 

between intelligence (Wave III) and drug use (Wave IV) has a -.019 slope (b = -.019, SE = .014, 

b = -.152, 95%CI = -.047, .009, p > .05) and the association between intelligence2 (Wave III) and 

drug use (Wave IV) has a .001 slope (b = .001, SE = .001, b = .035, 95%CI = -.001, .001, p > 

.05). The results of the cubic specification indicated that the association between intelligence 

(Wave III) and drug use (Wave IV) has a -.009 slope (b = -.009, SE = .015, b = -.076, 95%CI = -

.040, .021, p > .05), the association between intelligence2 (Wave III) and drug use (Wave IV) has 

a -.001 slope (b = -.001, SE = .001, b = -.247, 95%CI = -.003, .001, p > .05), and the association 

between intelligence3 (Wave III) and drug use (Wave IV) has a -.001 slope (b = -.001, SE = .001, 

b = -.369, 95%CI = -.001, .001, p > .05). None of the observed associations presented in Table 

6.22 reached statistical significance.  
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Table 6.22: Predicting the MZ difference score for drug use (Wave IV) with the MZ difference scores for intelligence (Wave III) and covariates. 

DV: Drug Use 

 (Wave IV) 

Model 1 Model 2 Model 3 

b SE β 95%CI b SE β 95%CI b SE β 95%CI 

Treatment Conditions (Wave III)             

Intelligence  -.021 .014 -.169 -.049,.007 -.019 .019 -.152 -.056,.019 -.009 .019 -.076 -.047,.028 

Intelligence2  -- -- -- -- .001 .001 .035 -.001,.001 -.001 .001 -.247 -.004,.002 

Intelligence3  -- -- -- -- -- -- -- -- -.001 .001 -.369 -.001,.001 

Covariates (Wave I)             

Maternal Conflict  .048 .101 .041 -.153,.249 .054 .108 .046 -.159,.268 .098 .106 .083 -.112,.307 

Paternal Conflict -.205 .123 -.167 -.450,.039 -.214 .139 -.175 -.490,.061 -.230 .132 -.187 -.492,.033 

School Attachment -.149 .150 -.108 -.448,.150 -.153 .152 -.112 -.457,.148 -.169 .153 -.123 -.473,.135 

Social Support  -.100 .128 -.089 -.354,.155 -.097 .128 -.087 -.351,.156 -.099 .125 -.088 -.348,.151 

Peer Drug Use .182 .250 .093 -.315,.678 .191 .262 .098 -.329,.712 .232 .263 .119 -.292,.755 

Baseline Drug Use .778 .406 .214 -.028,1.585 .778 .409 .214 -.034,1.591 .778* .405 .214 -.026,1.583 

R2 .077 .068 .079 

Npairs (NIn) 103 (206) 103 (206) 103 (206) 

Notes: Difference scores were only created for the variables in which the correlation between the MZ twins was below 1.00. “NIn” = Number of individuals. 

*p < .05 
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6.4 Summary of Findings: Studies 1, 2, and 354 

6.4.1. Educational attainment and antisocial behavior 

 Table 6.23 provides the point estimates for the bivariate and multivariate associations 

between educational attainment (Wave III) and delinquency (Wave IV), and educational 

attainment (Wave III) and drug use (Wave IV) derived from Studies 1, 2, and 3. Regarding the 

association between educational attainment (Wave III) and delinquency (Wave IV), 

discrepancies existed between the baseline bivariate association and the baseline multivariate 

association, the post-matching bivariate associations, and the MZ difference score bivariate 

association and multivariate association. Specifically, while the baseline bivariate regression 

model of delinquency (Wave IV) on educational attainment (Wave III) suggested a statistically 

significant -.029 association (b = -.029, SE = .004, b = -.061, 95%CI = -.038, -.021, p < .05), the 

models adjusting for social self-selection (PSM Caliper = .005: b = -.005, SE = .007, b = -.011, 

95%CI = -.020,.010, p < .05) and genetic self-selection (MZ difference with covariates:  b = -

.016, SE = .034, b = -.040, 95%CI = -.085, .053, p > .05) suggested that the slope of the 

association was not statistically significant and ranged between approximately -.016 (i.e., 

Bivariate MZ difference model) to .001 (i.e., Multivariate MZ difference model).  

Concerning educational attainment (Wave III) and drug use (Wave IV), discrepancies 

existed between the baseline bivariate association and the baseline multivariate association, the 

post-matching bivariate associations, and the MZ difference score bivariate association and 

multivariate association. Specifically, while the baseline bivariate regression model of drug use 

(Wave IV) on educational attainment (Wave III) suggested a statistically significant -.75 

association (b = -.75, SE = .022, b = -.070, 95%CI = -.218,-.132, p < .05), the models adjusting 

                                                
54 While comparisons are provided, the analytical samples vary in size and generalizability between the different 
estimation techniques. 
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for social self-selection (PSM Caliper = .005: b = -.090, SE = .041, b = -.036, 95%CI = -.171,-

.009, p < .05) and genetic self-selection (MZ difference with covariates:  b = -.021, SE = .186, b 

= -.008, 95%CI = -.388, .345, p > .05) suggested that the slope of the association was not 

statistically significant (the bivariate association was only statistically significant when the 

nearest neighbor caliper was set at .05 and .005) and ranged between approximately -.100 (i.e., 

Multivariate MZ difference model) to -.021 (i.e., Bivariate MZ difference model). 
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Table 6.23. Point estimates for educational attainment when predicting drug use (Wave IV). 
  DV: Delinquency (Wave IV) DV: Drug Use (Wave IV) 

b SE β 95%CI b SE β 95%CI 
Baseline (Wave III) 

        

Educational Attainment  -.029* .004 -.061 -.038,-.021 -.175* .022 -.070 -.218,-.132 
Educational Attainment with covariates -.011 .006 -.024 -.023,.001 -.055 .031 -.022 -.116,.007 

Post Matching (Wave III) 
        

Educational Attainment (caliper = .05) -.009 .007 -.020 -.024,.005 -.094* .040 -.038 -.173,-.016 
Educational Attainment (caliper = .01) -.005 .008 -.011 -.020,.010 -.074 .041 -.029 -.153,.006 
Educational Attainment (caliper = .005) -.005 .007 -.011 -.020,.010 -.090* .041 -.036 -.171,-.009 
Educational Attainment (caliper = .001) -.005 .008 -.012 -.021,.011 -.054 .046 -.022 -.144,.035 
Educational Attainment (caliper = .0001) -.026 .017 -.051 -.060,.008 -.048 .087 -.019 -.218,.122 

MZ Difference Models (Wave III) 
        

Educational Attainment  -.016 .034 -.040 -.085,.053 -.021 .186 -.008 -.388,.345 
Educational Attainment with covariates .001 .019 .001 -.037,.038 -.100 .302 -.032 -.699,.499 

Notes: The sample size varies between each estimation technique and each point estimate. The covariates included in the baseline models and the PSM model are 
as followed: Age, Non-White, Male, Parent Income, Parent Employment Status, Parent Education, Maternal Conflict, Paternal Conflict, School Attachment, 
Social Support, Peer Drug use, and Baseline Delinquency or Drug Use (depending upon the dependent variable). The covariates included in the MZ difference 
model are as followed: Maternal Conflict, Paternal Conflict, School Attachment, Social Support, Peer Drug use, and Baseline Delinquency or Drug Use 
(depending upon the dependent variable). 
*p < .05 
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6.4.2. Intelligence and antisocial behavior 

 Table 6.24 presents the point estimates for the bivariate and multivariate associations 

between intelligence (Wave III) and delinquency (Wave IV) derived from Studies 1, 2, and 3. 

Evident by the results, the linear, quadratic, and cubic point estimates for the baseline bivariate 

models, baseline multivariate models, post-matching models, and MZ difference models 

generally suggested that the slope of the association between intelligence (Wave III) and 

delinquency (Wave IV) was not statistically significant and ranged between -.007 (Model 3: 

post-GPS matching bivariate association) or .001 (Model 2: baseline bivariate model, baseline 

multivariate model, and post-GPS matching bivariate model). Furthermore, the slope of the 

association between intelligence2 (Wave III) and delinquency (Wave IV) was not statistically 

significant and ranged between -.001 (Model 2: baseline bivariate model, baseline multivariate 

model, post-GPS matching bivariate model, and MZ difference score multivariate model; Model 

3: MZ difference score bivariate model and MZ difference score multivariate model) or .001 

(Model 2: MZ difference score bivariate model; Model 3: baseline bivariate model, baseline 

multivariate model, and post-GPS matching bivariate model). Similarly, the slope of the 

association between intelligence3 (Wave III) and delinquency (Wave IV) was not statistically 

significant and ranged between -.001 (Model 3: baseline bivariate model, baseline multivariate 

model, and post-GPS matching bivariate model) or .001 (Model 3: MZ difference score bivariate 

model and MZ difference score multivariate model).  
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Table 6.24. Point estimates for intelligence when predicting delinquency (Wave IV). 
DV: Delinquency  

(Wave IV) 
Model 1 Model 2 Model 3 

b SE β 95%CI b SE β 95%CI b SE β 95%CI 
Baseline (Wave III) 

            

Intelligence  -.001 .001 -.003 -.001,.001 .001 .001 .053 -.001,.001 -.001 .001 -.081 -.005,.002 
Intelligence2  -- -- -- -- -.001 .001 -.057 -.001,.001 .001 .001 .335 -.001,.001 
Intelligence3  -- -- -- -- -- -- -- -- -.001 .001 -.264 -.001,.001 
Intelligence with covariates -.001 .001 -.001 -.001,.001 .001 .001 .016 -.001,.001 -.002 .001 -.120 -.007,.003 
Intelligence2 with covariates -- -- -- -- -.001 .001 -.017 -.001,.001 .001 .001 .387 -.001,.001 
Intelligence3 with covariates -- -- -- -- -- -- -- -- -.001 .001 -.274 -.001,.001 

Post GPS Matching (Wave III) 
            

Intelligence  -.001 .001 -- -.001,.001 .001 .001 -- -.002,.002 -.007 .003 -- -.013,.001 
Intelligence2  -- -- -- -- -.001 .001 -- -.001,.001 .001* .001 -- .001,.001 
Intelligence3  -- -- -- -- -- -- -- -- -.001 .001 -- -.001,-.001 

MZ Difference Models (Wave III) 
            

Intelligence  -.001 .001 -.098 -.003,.001 -.001 .001 -.119 -.004,.001 -.003 .002 -.183 -.007,.002 
Intelligence2  -- -- -- -- .001 .001 .060 -.001,.001 -.001 .001 -.056 -.001,.001 
Intelligence3  -- -- -- -- -- -- -- -- .001 .001 .164 -.001,.001 
Intelligence with covariates -.002 .002 -.107 -.006,.003 -.002 .004 -.127 -.010,.006 -.002 .002 -.127 -.007,.003 
Intelligence2 with covariates -- -- -- -- -.001 .001 -.039 -.001,.001 -.001 .001 -.039 -.001,.001 
Intelligence3 with covariates -- -- -- -- -- -- -- -- .001 .001 .001 -.001,.001 

Notes: The sample size varies between each estimation technique and each point estimate. The covariates included in the baseline models and the PSM model are 
as followed: Age, Non-White, Male, Parent Income, Parent Employment Status, Parent Education, Maternal Conflict, Paternal Conflict, School Attachment, 
Social Support, Peer Drug use, and Baseline Delinquency. The covariates included in the MZ difference model are as followed: Maternal Conflict, Paternal 
Conflict, School Attachment, Social Support, Peer Drug use, and Baseline Delinquency. 
*p < .05 
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 Table 6.25 presents the point estimates for the bivariate and multivariate associations 

between intelligence (Wave III) and drug use (Wave IV) derived from Studies 1, 2, and 3. 

Evident by the results, the linear, quadratic, and cubic point estimates for the baseline bivariate 

models, baseline multivariate models, post-matching models, and MZ difference models 

generally suggested that the slope of the association between intelligence (Wave III) and drug 

use (Wave IV) could be statistically significant and ranged between -.081 (Model 3: Baseline 

bivariate model) or .003 (Model 1: baseline multivariate model and post-GPS matching bivariate 

model). Furthermore, the slope of the association between intelligence2 (Wave III) and drug use 

(Wave IV) could be statistically significant and ranged between -.001 (Model 2: baseline 

bivariate model, baseline multivariate model, post-GPS matching bivariate model, MZ difference 

score bivariate model, and MZ difference score multivariate model; Model 3 baseline bivariate 

model, baseline multivariate model, and post-GPS matching bivariate model) or .001 (Model 3: 

MZ difference score bivariate model, and MZ difference score multivariate model). Similarly, 

the slope of the association between intelligence3 (Wave III) and drug use (Wave IV) could be 

statistically significant and was consistently estimated as -.001 across all specifications.  

 In context, these findings, although valuable, are limited when approximating the true 

counterfactual condition for the association between educational attainment and antisocial 

behavior, and intelligence and antisocial behavior. Given that PSM cannot adjust for genetic 

factors and MZ difference scores generally cannot adjust for non shared environmental factors an 

alternative methodological strategy should be employed to more closely approximate the true 

counterfactual condition. The subsequent subsection provides the results of the evaluation 

comparing the GAPSM methodology to an unconfounded PSM and a MZ difference score 

analysis.  
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Table 6.25. Point estimates for intelligence when predicting drug use (Wave IV). 
DV: Drug Use  

(Wave IV) 
Model 1 Model 2 Model 3 

b SE β 95%CI b SE β 95%CI b SE β 95%CI 
Baseline (Wave III) 

            

Intelligence  -.008* .001 .100 .006,.009 -.001 .003 -.004 -.006,.005 -.081* .009 -1.051 -.099,-.063 
Intelligence2  -- -- -- -- .001* .001 .107 .001,.001 .001* .001 3.163 .001,.002 
Intelligence3  -- -- -- -- -- -- -- -- -.001* .001 -2.057 -.001,-.001 
Intelligence with covariates .003* .001 .033 .001,.005 -.008 .001 -.094 -.016,.001 -.050* .013 -.594 -.077,-.024 
Intelligence2 with covariates -- -- -- -- .001* .001 .132 .001,.001 .001* .001 1.619 .001,.001 
Intelligence3 with covariates -- -- -- -- -- -- -- -- -.001* .001 -1.008 -.001,.001 

Post GPS Matching (Wave III) 
            

Intelligence  .003* .001 -- .001,.005 -.011 .006 -- -.022,.001 -.084* .018 -- -.120,-.048 
Intelligence2  -- -- -- -- .001* .001 -- .001,.001 .001* .001 -- .001,.002 
Intelligence3  -- -- -- -- -- -- -- -- -.001* .001 -- -.001,.-.001 

MZ Difference Models (Wave III) 
            

Intelligence  -.017* .007 -.184 -.030,-.004 -.018* .008 -.193 -.034,-.003 -.021 .013 -.223 -.046,.004 
Intelligence2  -- -- -- -- .001 .001 .026 -.001,.001 -.001 .001 -.025 -.001,.001 
Intelligence3  -- -- -- -- -- -- -- -- .001 .001 .072 -.001,.001 
Intelligence with covariates -.021 .014 -.169 -.049,.007 -.019 .019 -.152 -.056,.019 -.009 .019 -.076 -.047,.028 
Intelligence2 with covariates -- -- -- -- .001 .001 .035 -.001,.001 -.001 .001 -.247 -.004,.002 
Intelligence3 with covariates -- -- -- -- -- -- -- -- -.001 .001 -.369 -.001,.001 

Notes: The sample size varies between each estimation technique and each point estimate. The covariates included in the baseline models and the PSM model are 
as followed: Age, Non-White, Male, Parent Income, Parent Employment Status, Parent Education, Maternal Conflict, Paternal Conflict, School Attachment, 
Social Support, Peer Drug use, and Baseline Drug Use. The covariates included in the MZ difference model are as followed: Maternal Conflict, Paternal Conflict, 
School Attachment, Social Support, Peer Drug use, and Baseline Drug Use. The large β in the baseline model 3 correspond to the extremely small standard errors 
associated with the quadratic and cubic specification of intelligence. 
*p < .05 
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6.5. Study 4: GAPSM Proof of Concept55 

 To identify the conditions in which the GAPSM methodology provides superior 

adjustments for social and genetic self-selection (i.e., point estimates closer to the true point 

estimate) when compared to point estimates derived from MZ difference score model and an 

unconfounded post-PSM model, a series of three figures were created. In each figure, five 

iterations of the post-GAPSM point estimates are compared to the point estimates derived from 

the MZ difference score approach and the unconfounded post-PSM approach. Figure 6.3 presents 

these comparisons for the first 13 specifications of the treatment condition and the point of 

equivalence, Figure 6.4 presents these comparisons for the second 13 specifications of the 

treatment condition and the point of equivalence, and Figure 6.5 presents these comparisons for 

the third 13 specifications of the treatment condition and the point of equivalence. In each figure, 

Panel A and Panel B compare the five iterations of the post-GAPSM point estimates to the point 

estimates derived from MZ difference score approach. Panel C and Panel D compare the five 

iterations of the post-GAPSM point estimates to the point estimates derived from unconfounded 

post-PSM approach.  

The five iterations presented signify the most likely situations in which the GAPSM 

methodology can be implemented. Specifically, the black bars represent the iteration in which 

the participants are matched on all of the genetic variance (a), on 25 percent of the variance in 

the treatment condition predicted by the non shared environment (e), and on 25 percent of the 

variance in the treatment condition predicted by the shared environment (c; panel A and C in 

each figure). The dark gray bars represent the iteration in which the participants are matched on 

all of the genetic variance (a), on 50 percent of the variance in the treatment condition predicted 

by the non shared environment (e), and on 50 percent of the variance in the treatment condition 

                                                
55 The of 30-point estimates produced for each specification of the treatment condition (i.e., 40 different 
specifications, 120 point estimates in total) are presented in Appendix F. 
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predicted by the shared environment (c; panel A and C in each figure). The light gray bars 

represent the iteration in which the participants are matched on all of the genetic variance (a), on 

75 percent of the variance in the treatment condition predicted by the non shared environment 

(e), and on 75 percent of the variance in the treatment condition predicted by the shared 

environment (c; panel A and C in each figure).  

The red bars represent the iteration in which the participants are matched on all of the 

genetic variance (a), on 50 percent of the variance in the treatment condition predicted by the 

non shared environment (e), and on 75 percent of the variance in the treatment condition 

predicted by the shared environment (c; panel B and D in each figure). The blue bars represent 

the iteration in which the participants are matched on all of the genetic variance (a), on 75 

percent of the variance in the treatment condition predicted by the non shared environment (e), 

and on 50 percent of the variance in the treatment condition predicted by the shared environment 

(c; panel B and D in each figure).  

In an effort to dispel any confusion, when stating that the participants were matched on 

50 percent of the variance in the treatment condition predicted by the non shared environment 

(e), this means that if the non shared environment (e) predicted 50 percent of the variance in the 

treatment condition participants were matched on 50 percent of said prediction (i.e., 25 percent 

of the variance in the treatment condition predicted by the non shared environment (e)). To 

reiterate, this was achieved through the creation of independent variables for the shared (c; i.e., 

x1, x2, x3, and x4) and non shared environment (e; i.e., x5, x6, x7, and x8). In the example 

provided above, two of the independent variables corresponding to the non shared environment 

(i.e., x5 and x6) would be used to match participants. In addition to the results of the five 

iterations presented in figures 6.3, 6.4, and 6.5, Appendix F provides the results for the 

remaining 16 iterations of post-GAPSM and allows the reader to compare the post-GAPSM 
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point estimates to the point estimates produced by an MZ difference score model and an 

unconfounded PSM model.  

6.5.1. First round of thirteen specifications of the treatment condition 

 Figure 6.3 provides the point estimate comparisons between the five iterations of the 

GAPSM approach, the MZ difference score approach, and the unconfounded PSM approach for 

the first 13 specifications56 of the treatment condition and the point of equivalence. The black 

dashed line in every panel signifies that the point estimate from the GAPSM approach is further 

(below the line), equivalent (equal), or closer (above the line) to the true point estimate than the 

MZ difference score approach or the unconfounded PSM approach.  

In reference to the GAPSM/MZ difference comparison (Panel A and Panel B), it can be 

observed that the GAPSM approach created a point estimate equivalent to or closer to the true 

point estimate (1.00) for the majority of the five iterations across the first thirteen specifications. 

For the first iteration of the GAPSM approach (black bar; participants matched on 25 percent of 

the variance in the treatment condition predicted by the non shared environment and shared 

environment, respectively), it can be observed that the GAPSM point estimate was further from 

the true point estimate than the MZ difference approach across all of the specifications of the 

treatment condition. Evidence suggested that the second iteration of the GAPSM approach (dark 

gray bar; participants matched on 50 percent of the variance in the treatment condition predicted 

by the non shared environment and shared environment, respectively) generally gets closer to the 

true point estimate than the MZ difference score approach when the genetic contribution is 

lower. Specifically, it can be observed that the second iteration of the GAPSM approach is closer 

to the true point estimate for the second (variance in t predicted by a = .10, e = .43, c = .43), third 

                                                
56 The amount of variance in the treatment condition predicted by genetic factors (a) increased from .05 to .65 in .05 
increments, while the variance in the treatment condition predicted the non shared environment (e) and the shared 
environment (c) were set equal to each other. 
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(variance in t predicted by a = .15, e = .40, c = .40), fourth (variance in t predicted by a = .20, e = 

.38, c = .38), fifth (variance in t predicted by a = .25, e = .35, c = .35), sixth (variance in t 

predicted by a = .30, e = .33, c = .33), seventh (variance in t predicted by a = .35, e = .30, c = 

.30), eighth (variance in t predicted by a = .40, e = .28, c = .28), and ninth (variance in t predicted 

by a = .45, e = .25, c = .25) specification of the treatment condition.  

The same patterns can be observed for the third (light gray bar; participants matched on 

75 percent of the variance in the treatment condition predicted by the non shared environment 

and shared environment, respectively), fourth (red bar; participants matched on 50 and 75 

percent of the variance in the treatment condition predicted by the non shared environment and 

shared environment, respectively), and fifth iterations (blue bar; participants matched on 75 and 

50 percent of the variance in the treatment condition predicted by the non shared environment 

and shared environment, respectively), with the additional evidence suggesting that these 

iterations perform better than the MZ difference score for the first (variance in t predicted by a = 

.05, e = .45, c = .45), tenth (variance in t predicted by a = .50, e = .23, c = .23), and eleventh 

(variance in t predicted by a = .55, e = .20, c = .20) specifications of the treatment condition. 

In reference to the GAPSM/unconfounded PSM comparison (Panel C and Panel D), it 

can be observed that the GAPSM approach created a point estimate equivalent or closer to the 

true point estimate (1.00) for the majority of the five iterations across the first 13 specifications. 

For the first iteration of the GAPSM approach (black bar; participants matched on 25 percent of 

the variance in the treatment condition predicted by the non shared environment and shared 

environment, respectively), it can be observed that the GAPSM point estimate was further from 

the true point estimate than the unconfounded PSM approach across all of the specifications of 

the treatment condition. Evidence suggested that the second iteration of the GAPSM approach 

(dark gray bar; participants matched on 50 percent of the variance in the treatment condition 



 153 

predicted by the non shared environment and shared environment, respectively) produced a point 

estimate generally equivalent to the point estimate produced by the unconfounded PSM approach 

for 11 of the 13 specifications of the treatment condition.  

The third iteration (light gray bar; participants matched on 75 percent of the variance in 

the treatment condition predicted by the non shared environment and shared environment, 

respectively) of the GAPSM approach generally produced a point estimate closer to that of the 

true point estimate than the unconfounded PSM approach across 12 of the 13 specifications of 

the treatment condition. Furthermore, this pattern of results was relatively consistent when 

comparing the fourth (red bar; participants matched on 50 and 75 percent of the variance in the 

treatment condition predicted by the non shared environment and shared environment, 

respectively) and fifth (blue bar; participants matched on 75 and 50 percent of the variance in the 

treatment condition predicted by the non shared environment and shared environment, 

respectively) iterations of the GAPSM approach to the point estimates derived from an 

unconfounded PSM approach. Distinct from the third and fourth iterations, the fifth iteration of 

the of the GAPSM approach (blue bar; participants matched on 75 and 50 percent of the variance 

in the treatment condition predicted by the non shared environment and shared environment, 

respectively) was further from the true point estimate than the unconfounded PSM approach on 

the second specification (variance in t predicted by a = .10, e = .43, c = .43) of the treatment 

condition. 
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Figure 6.3: Comparing the GAPSM point estimate (y ~ t) to the MZ difference score and the unconfounded PSM point estimates (c = e). 

 
Notes: The figure presents the first 13 specifications of the treatment condition (indicated by the number) and the point of equivalence. To reiterate, the first 13 
iterations increase the variance in the treatment condition predicted by genetic factors (a) increased from .05 to .65 in .05 increments, while the variance in the 
treatment condition predicted the non shared environment (e) and the shared environment (c) were set equal to each other. Four percent (or .04) of the variance in 
the treatment condition was predicted by the error term (E). EQ represents the point of equivalence. e = Non shared environment; c = shared environment. For 
the legend, values in parentheses represents the percentage of the portion of the variance in the treatment condition explained by the non shared or shared 
environment that the participants were matched upon. The GAPSM accounted for all of the variance in the treatment condition explained by a. The black 
horizontal line represents a point estimate equivalent to the MZ difference point estimate or an unconfounded PSM point estimate for the specified condition. 
Bars above the black horizontal line indicate that the GAPSM point estimate was closer to the true point estimate (1.00) than the MZ difference point estimate or 
the PSM point estimate for the specified condition. Bars below the black horizontal line indicate that the GAPSM point estimate was further away from the true 
point estimate (1.00) than the MZ difference point estimate or the PSM point estimate for the specified condition 
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6.5.2. Second round of thirteen specifications of the treatment condition 

Figure 6.4 provides the point estimate comparisons between the five iterations of the 

GAPSM approach, the MZ difference score approach, and the unconfounded PSM approach for 

the second 13 specifications57 of the treatment condition and the point of equivalence. In 

reference to the GAPSM/MZ difference comparison (Panel A and Panel B), it can be observed 

that the GAPSM approach produced a point estimate equivalent or closer to the true point 

estimate (1.00) for the majority of the five iterations across the second thirteen specifications. 

For the first iteration of the GAPSM approach (black bar; participants matched on 25 percent of 

the variance in the treatment condition predicted by the non shared environment and shared 

environment, respectively), it can be observed that the GAPSM point estimate was generally 

equivalent to the point estimate produced by the MZ difference score approach.  

Specifically, the results suggested that the GAPSM point estimate was equivalent to the 

point estimate produced by the MZ difference score approach on the fourteenth (variance in t 

predicted by a = .05, e = .68, c = .22), fifteenth (variance in t predicted by a = .10, e = .64, c = 

.21), sixteenth (variance in t predicted by a = .15, e = .60, c = .20), seventeenth (variance in t 

predicted by a = .20, e = .56, c = .19), eighteenth (variance in t predicted by a = .25, e = .53, c = 

.18), nineteenth (variance in t predicted by a = .30, e = .49, c = .16), and twentieth (variance in t 

predicted by a = .35, e = .45, c = .15) specification of the treatment condition. The evidence 

suggested that the second iteration (dark gray bar; participants matched on 50 percent of the 

variance in the treatment condition predicted by the non shared environment and shared 

environment, respectively) of the GAPSM approach produces a point estimate closer to the true 

                                                
57 The amount of variance in the treatment condition predicted by genetic factors (a) increased from .05 to .65 in .05 
increments, while the variance in the treatment condition predicted the non shared environment (e) was 
approximately three times that of the shared environment (c). 
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point estimate than the MZ difference score approach on 10 of the 13 specifications of the 

treatment condition.  

The second iteration only performs worse than the MZ difference score model when 

genetic factors (a) contribute approximately 55, 60, or 65 percent of the variance in the treatment 

condition. Similar to these findings, the fourth (red bar; participants matched on 50 and 75 

percent of the variance in the treatment condition predicted by the non shared environment and 

shared environment, respectively) and fifth (blue bar; participants matched on 75 and 50 percent 

of the variance in the treatment condition predicted by the non shared environment and shared 

environment, respectively) iterations of the GAPSM approach produce point estimates closer to 

the true point estimate than the MZ difference score approach on 11 of the 13 specifications of 

the treatment condition. Specifically, unlike the second iteration, the fourth and fifth iterations 

produce point estimates closer to the true point estimate than the MZ difference score model 

when genetic factors (a) contribute approximately 55 percent of the variance in the treatment 

condition. The third iteration (light gray bar; participants matched on 75 percent of the variance 

in the treatment condition predicted by the non shared environment and shared environment, 

respectively) of the GAPSM approach produced a point estimate closer to the true point estimate 

than the MZ difference score approach on all 13 specifications of the treatment condition. 

In reference to the GAPSM/unconfounded PSM comparison (Panel C and Panel D), it 

can be observed that the GAPSM approach created a point estimate equivalent or closer to the 

true point estimate (1.00) for the majority of the five iterations across the second 13 

specifications. For the first iteration of the GAPSM approach (black bar; participants matched on 

25 percent of the variance in the treatment condition predicted by the non shared environment 

and shared environment, respectively), it can be observed that the GAPSM point estimate was 

further from the true point estimate than the unconfounded PSM approach across all of the 
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specifications of the treatment condition. Evidence suggested that the second iteration of the 

GAPSM approach (dark gray bar; participants matched on 50 percent of the variance in the 

treatment condition predicted by the non shared environment and shared environment, 

respectively) produced a point estimate generally equivalent the point estimate produced by the 

unconfounded PSM model on 7 of the 13 specifications of the treatment condition.  

The third iteration (light gray bar; participants matched on 75 percent of the variance in 

the treatment condition predicted by the non shared environment and shared environment, 

respectively) of the GAPSM approach generally produced a point estimate closer to that of the 

true point estimate than the unconfounded PSM approach across 10 of the 13 specifications of 

the treatment condition. Furthermore, this pattern of results was relatively consistent when 

comparing the fourth (red bar; participants matched on 50 and 75 percent of the variance in the 

treatment condition predicted by the non shared environment and shared environment, 

respectively) and fifth (blue bar; participants matched on 75 and 50 percent of the variance in the 

treatment condition predicted by the non shared environment and shared environment, 

respectively) iterations of the GAPSM approach to the point estimates derived from an 

unconfounded PSM approach. Distinct from the third iteration, the fourth and fifth iterations of 

the GAPSM approach were further from the true point estimate than the unconfounded PSM 

approach when genetic factors predicted 20 and 25 percent of the variance in the treatment 

condition. 
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Figure 6.4: Comparing the GAPSM point estimate (y ~ t) to the MZ difference score and the unconfounded PSM point estimates (e = 3*c).  

 
Notes: The figure presents the second 13 specifications of the treatment condition (indicated by the number) and the point of equivalence. To reiterate, the second 
13 iterations increase the variance in the treatment condition predicted by genetic factors (a) increased from .05 to .65 in .05 increments, while the variance in the 
treatment condition predicted the non shared environment (e) is approximately three times that of the shared environment (c). Four percent (or .04) of the 
variance in the treatment condition was predicted by the error term (E). EQ represents the point of equivalence. e = Non shared environment; c = shared 
environment. For the legend, values in parentheses represents the percentage of the portion of the variance in the treatment condition explained by the non shared 
or shared environment that the participants were matched upon. The GAPSM accounted for all of the variance in the treatment condition explained by a. The 
black horizontal line represents a point estimate equivalent to the MZ difference point estimate or an unconfounded PSM point estimate for the specified 
condition. Bars above the black horizontal line indicate that the GAPSM point estimate was closer to the true point estimate (1.00) than the MZ difference point 
estimate or the PSM point estimate for the specified condition. Bars below the black horizontal line indicate that the GAPSM point estimate was further away 
from the true point estimate (1.00) than the MZ difference point estimate or the PSM point estimate for the specified condition. 
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6.5.3. Third round of thirteen specifications of the treatment condition 

Figure 6.5 provides the point estimate comparisons between the five iterations of the 

GAPSM approach, the MZ difference score approach, and the unconfounded PSM approach for 

the final 13 specifications58 of the treatment condition and the point of equivalence. In reference 

to the GAPSM/MZ difference comparison (Panel A and Panel B), it can be observed that the 

GAPSM approach created a point estimate equivalent or closer to the true point estimate (1.00) 

for the majority of the five iterations across the final thirteen specifications. For the first iteration 

of the GAPSM approach (black bar; participants matched on 25 percent of the variance in the 

treatment condition predicted by the non shared environment and shared environment, 

respectively), it can be observed that the GAPSM point estimate was further from the true point 

estimate than the MZ difference approach across all of the specifications of the treatment 

condition.  

The second iteration (dark gray bars; participants matched on 50 percent of the variance 

in the treatment condition predicted by the non shared environment and shared environment, 

respectively) of the of the GAPSM approach produced point estimates equivalent or closer to the 

true point estimate than that of the MZ difference score approach when genetic factors (a) 

accounted for approximately 30 (thirty-second specification), 35 (thirty-third specification), 40 

(thirty-fourth specification), and 45 (thirty-fifth specification) percent of the variance. Similarly, 

the third (light gray bar; participants matched on 75 percent of the variance in the treatment 

condition predicted by the non shared environment and shared environment, respectively), fourth 

(red bar; participants matched on 50 and 75 percent of the variance in the treatment condition 

predicted by the non shared environment and shared environment, respectively), and fifth 

                                                
58 The amount of variance in the treatment condition predicted by genetic factors (a) increased from .05 to .65 in .05 
increments, while the variance in the treatment condition predicted the shared environment (c) was approximately 
three times that of the shared environment (e). 
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iterations (blue bar; participants matched on 75 and 50 percent of the variance in the treatment 

condition predicted by the non shared environment and shared environment, respectively) of the 

GAPSM approach performed better than the MZ difference score approach on six to eight of the 

thirteen specifications of the treatment condition. Generally, the third, fourth, and fifth iterations 

of the GAPSM approach got closer to the true point estimate than the MZ difference score 

approach when both genetic factors (a) and the shared environment (c) contributed between 

approximately 75 percent and 84 percent of the variance in the treatment condition. 

In reference to the GAPSM/unconfounded PSM comparison (Panel C and Panel D), it 

can be observed that the GAPSM approach created a point estimate equivalent or closer to the 

true point estimate (1.00) for the majority of the five iterations across the final 13 specifications. 

For the first iteration of the GAPSM approach (black bar; participants matched on 25 percent of 

the variance in the treatment condition predicted by the non shared environment and shared 

environment, respectively), it can be observed that the GAPSM point estimate was further from 

the true point estimate than the unconfounded PSM approach across all of the specifications of 

the treatment condition. Evidence suggested that the second iteration of the GAPSM approach 

(dark gray bar; participants matched on 50 percent of the variance in the treatment condition 

predicted by the non shared environment and shared environment, respectively) produced a point 

estimate generally equivalent or closer to the true point estimate than the point estimate produced 

by the unconfounded PSM approach on 6 of the 13 specifications of the treatment condition.  

The third iteration (light gray bar; participants matched on 75 percent of the variance in 

the treatment condition predicted by the non shared environment and shared environment, 

respectively) of the GAPSM approach generally produced a point estimate closer to that of the 

true point estimate than the unconfounded PSM approach across 9 of the 13 specifications of the 

treatment condition. Furthermore, this pattern of results was relatively consistent when 
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comparing the fourth (red bar; participants matched on 50 and 75 percent of the variance in the 

treatment condition predicted by the non shared environment and shared environment, 

respectively) and fifth (blue bar; participants matched on 75 and 50 percent of the variance in the 

treatment condition predicted by the non shared environment and shared environment, 

respectively) iterations of the GAPSM approach to the point estimates derived from an 

unconfounded PSM approach. Distinct from the third iteration, the fourth and fifth iterations of 

the GAPSM approach were further from the true point estimate than the unconfounded PSM 

approach when genetic factors predicted 25 percent of the variance in the treatment condition.
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Figure 6.5: Comparing the GAPSM point estimate (y ~ t) to the MZ difference score and the unconfounded PSM point estimates (c = 3*e).  

 
Notes: The figure presents the final 13 specifications of the treatment condition (indicated by the number) and the point of equivalence. To reiterate, the final 13 
iterations increase the variance in the treatment condition predicted by genetic factors (a) increased from .05 to .65 in .05 increments, while the variance in the 
treatment condition predicted the shared environment (c) is approximately three times that of the non shared environment (e). Four percent (or .04) of the 
variance in the treatment condition was predicted by the error term (E). EQ represents the point of equivalence. e = Non shared environment; c = shared 
environment. For the legend, values in parentheses represents the percentage of the portion of the variance in the treatment condition explained by the non shared 
or shared environment that the participants were matched upon. The GAPSM accounted for all of the variance in the treatment condition explained by a. The 
black horizontal line represents a point estimate equivalent to the MZ difference point estimate or an unconfounded PSM point estimate for the specified 
condition. Bars above the black horizontal line indicate that the GAPSM point estimate was closer to the true point estimate (1.00) than the MZ difference point 
estimate or the PSM point estimate for the specified condition. Bars below the black horizontal line indicate that the GAPSM point estimate was further away 
from the true point estimate (1.00) than the MZ difference point estimate or the PSM point estimate for the specified condition. 
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CHAPTER 7: DISCUSSION 

Contemporary social scientists often rely on various statistical techniques to produce 

unconfounded point estimates of the association between two variables. Propensity score 

matching (PSM) and MZ difference score modeling represent two of the foremost methodologies 

employed in such analyses. Although useful methodological techniques, limitations associated 

with each statistical technique hinder the ability to establish the best unbiased point estimates in 

certain conditions. Genetically adjusted propensity score matching (GAPSM) represents an 

alternative statistical technique designed to approach the true association between two variables 

when PSM and MZ difference score modeling cannot. The primary focus of the current study 

was to propose this alternative methodology for estimating causal associations within the social 

sciences.  

The current chapter will focus on the findings associated with Study 4 (subsection 6.5. of 

Chapter 6). To reiterate, Study 4 evaluated the validity of the GAPSM approach by deriving 

post-matching point estimates and comparing them to the post-PSM point estimates and the point 

estimates produced by MZ difference score modeling. Nevertheless, to briefly summarize the 

findings associated with studies 1, 2 and 3, the evidence suggested that more stringent 

methodologies (PSM and MZ difference score analysis) were more likely to produce attenuated 

associations than the bivariate and multivariate regression models. Furthermore, the findings 

associated with the PSM and MZ difference score analyses had a higher probability of 

identifying a null association than the bivariate and multivariate regression models.  

7.1. Findings 

Three major findings associated with the simulation analyses should be highlighted. First, 

when the amount of variance in the treatment condition predicted by the non shared environment 

(e) and the shared environment (c) were equal to each other (i.e., the first 13 specifications) or 
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when the non shared environment (e) predicted three times the amount of variance of the shared 

environment (c; i.e., the second 13 specifications), four of the GAPSM iterations (i.e.,  

participants matched on Iteration 2: e = .50, c = .50; Iteration 3: e = .75, c = .75; Iteration 4: e = 

.50, c = .75; Iteration 5: e = .75, c = .50) appeared to provide point estimates equal to or closer to 

the true point estimate (1.00) than the MZ difference score model for the majority of the 

specifications (generally about .05 to .1 closer to the true point estimate than the MZ difference 

score model). Furthermore, the evidence suggested that the GAPSM approach was generally 

superior (i.e., post-matching point estimate was closer to the true point estimate) to the MZ 

difference score model when a larger amount of variance in the treatment condition was 

predicted by the non shared environment (e). This finding is consistent with logic, given that MZ 

difference scores cannot adjust for the effects of the non shared environment (e) without the 

introduction of additional covariates (Plomin et al., 2013).  

 Second, when the amount of variance in the treatment condition predicted by the non 

shared environment (e) and the shared environment (c) was equal to each other (i.e., the first 13 

specifications), when the non shared environment (e) predicted three times the amount of 

variance of the shared environment (c; i.e., the second 13 specifications), or when the shared 

environment (c) predicted three times the amount of variance of the non shared environment (e; 

i.e., the third 13 specifications), four of the GAPSM iterations (i.e.,  participants matched on 

Iteration 2: e = .50, c = .50; Iteration 3: e = .75, c = .75; Iteration 4: e = .50, c = .75; Iteration 5: e 

= .75, c = .50) appeared to provide point estimates equal to or closer to the true point estimate 

(1.00) than the unconfounded post-PSM point estimate for the majority of the 

specifications(generally about .05 to .1 closer to the true point estimate than the unconfounded 

post-PSM point estimate). Furthermore, the evidence suggested that the GAPSM approach was 

generally superior to the unconfounded post-PSM point estimate when a larger amount of 
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variance in the treatment condition was predicted by genetic factors (a). This finding is 

consistent with logic, given that unconfounded PSM cannot adjust for the effects of genetic 

factors (a) without the introduction of genetically sensitive covariates (Guo and Fraser, 2015).  

Finally, only a limited number of specifications were observed where the first iteration of 

the GAPSM approach produced point estimates equal to or closer to the true point estimate than 

the point estimates produced by the MZ difference score model and post-PSM model. The 

findings suggested that the first iteration of the GAPSM approach (e = 25, c = 25) produced 

point estimates generally further from true point estimate than the point estimates derived by the 

MZ difference score model and post-PSM model. Overall, the findings of the simulation analysis 

suggest that GAPSM can provide less biased point estimates than an unconfounded PSM and 

MZ difference score model during various conditions. 

7.2. Implications for Social Science Research  

 The three findings outlined above have broad methodological implications for conducting 

research within the social sciences. As alluded to in Chapter 1, contemporary social science 

research often relies on statistical techniques that cannot estimate the causal association between 

two or more concepts.59 Social scientists, however, have the statistical tools to more readily 

estimate the causal association between concepts. As demonstrated by the results of simulation 

analysis, unconfounded PSM and quantitative genetic techniques (i.e., MZ difference scores) can 

be used to examine causal associations and approach the true point estimate more readily than 

bivariate analyses (see Appendix F). Furthermore, MZ difference score analysis, the gold 

standard in causal estimation, generally approaches the true point estimate more readily than 

bivariate analyses and an unconfounded PSM (see Appendix F).60 Given these findings, various 

                                                
59 This results from the inability to satisfy all the assumptions associated with said statistical techniques.  
60 Generally, PSM analyses are confounded by unmeasured genetical and environmental influences. 
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methodologies are already present in the literature to estimate the effects of social/environmental 

factors (i.e., a treatment condition) on behavioral and health outcomes.  

 Although the simulation analysis posits favorable findings for the preexisting 

methodologies, many of the comparisons demonstrated that the GAPSM approach can 

outperform the preexisting methodologies when certain conditions exist. These findings provide 

substantive and practical implications concerning future social science research. Regarding the 

substantive implications, the findings highlight the advantages of studying the association 

between a treatment condition and an outcome of interest with GAPSM. Through the observation 

of both genetic and environmental factors, future scholars can approximate the true association 

between concepts without suffering the limitations associated with PSM and MZ difference score 

analyses (see Chapter 3). Specifically, GAPSM allows scholars to control for observed genetic 

factors (a potential limitation associated with PSM), while not relying on generally smaller twin 

based subsamples (a limitation associated with MZ difference score analyses). Furthermore, 

similar to PSM, GAPSM can be used across levels of measurement (i.e., nominal, ordinal, 

interval, or ratio) and is mathematically adaptable to be used in conjunction with various pre-

GAPSM estimation techniques (e.g., cross-sectional, hieratical linear modeling, longitudinal 

modeling) and post-GAPSM evaluation models (e.g., t-tests, OLS regression, longitudinal 

modeling). The quintessential meaning is that GAPSM can potentially serve at the forefront of 

modern social science research or in a complimentary fashion to statistical methodologies 

currently employed by social scientists.  

Given the substantive implications, two practical implications for social scientists exist to 

increase the likelihood of conducting GAPSM based research studies in the future. First, given 

the recent advancements in sociogenomics and the reductions in cost associated with mapping 

the human genome, social scientists can more readily collect molecular genetic information from 
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research participants. Although essential to estimating causal associations through the 

employment of the GAPSM approach, molecular genetic information can be used for additional 

purposes (e.g., study the link between genes and life outcomes; Dudbridge, 2013). In terms of the 

GAPSM approach, whole genome data can be used to limit the confounding effects of genetic 

factors on the estimation of causal associations without requiring a MZ twin sample.  

Second, surveys implemented alongside genetic data collection should be expanded to 

certify that shared and non shared environmental factors that are empirically associated with a 

large number of treatment conditions are measured. The expansion of survey instruments could 

potentially increase the amount of variance in a treatment condition observed through the 

introduction of shared and non shared environmental factors during the estimation of GAPS. The 

expansion of survey instruments should be guided by prior theoretical and empirical literature 

identifying the shared and non shared environmental factors predictive of the specified treatment 

condition. Although pertinent to all social scientists, these practical implications are essential 

when collecting data designed to address research questions that involve the estimation of social 

causation at the individual level. The collection of genetic data and rich environmental data, and 

the use of the GAPSM approach can potentially increase our ability to isolate the causal effects 

of social conditions on behavioral outcomes at the individual level. Within criminology and 

criminal justice, the GAPSM approach can be particularly useful. 

7.3. Implications for Criminology and Criminal Justice 

 The identification of conditions in which the post-GAPSM point estimate is equivalent or 

closer to the true point estimate than an unconfounded post-PSM point estimate and an MZ 

difference score point estimate has broad implications for criminology and criminal justice. As 

such, the current subsection will discuss the value of the GAPSM approach to three different 
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areas of criminological and criminal justice research: theory testing, policy evaluation, treatment 

evaluation.  

7.3.1. GAPSM and testing criminological theories  

 Germane to empirical assessments of criminological theory is the ability of GAPSM to 

more accurately approximate the causal association between social concepts than preexisting 

methodologies (i.e., SSSMs). As such, through the employment of GAPSM scholars can 

continue to support or refute the claims of various criminological theories using genetically 

sensitive methodologies. While this has already begun through the employment of MZ difference 

score methodologies (see Beaver, Vaugh, and DeLisi, 2013; Pike et al., 1996; Nedelec et al., 

2017), GAPSM can offer a reevaluation of various criminological hypotheses when employing 

samples derived from the genetically unrelated individuals (i.e., non-twins).  

 For instance, given the non-zero heritability estimate for key criminological constructs 

(e.g., self-control, learning, peer selection; Polderman et al., 2013), scholars can reevaluate the 

causal effects of these variables on subsequent antisocial behavior. Through the employment of 

the GAPSM approach, one such reevaluation could estimate the causal effects of self-control on 

subsequent antisocial behavior independent of the confounding genetic effects. As such, the 

results could illuminate if self-control has a causal effect (or provide a more accurate point 

estimate) on antisocial behavior or if common genetic and environmental variants generate the 

covariance between the two constructs. Similar research studies can be conducted to evaluate if 

learning and peers have a causal effect on antisocial behavior or if the hypothesized associations 

are spurious. Nevertheless, these example has yet to be evaluated using the GAPSM approach.  

Although supporting and refuting the claims of criminological hypotheses is beneficial, 

the true value of the GAPSM approach when assessing criminological theories is the 

approximation of the true effect size between treatment conditions (i.e., predictors of antisocial 
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behavior) and antisocial behavior. Estimating the true effect size allows scholars to identify the 

factors that have the strongest influence on antisocial behavior and is important when employing 

large data sets where a number of statistically significant observations will likely appear. For 

instance, Pratt and Cullen (2000), using meta-analytical techniques, estimated that the true effect 

size between self-control and criminal behavior is approximately .20. Nevertheless, these 

findings were solely based on previous research only employing SSSMs and are likely biased 

considering that confounding genetic and shared environmental factors were not included in the 

analyses. These claims have been demonstrated by scholarship using twin based methodologies 

(see Beaver, Boutwell, and Barnes, 2014; Waller et al., 2018). This example, consistent with 

most empirical tests of criminological theories, highlights the conceivable possibility that a wide 

variety of factors contribute to both the theorized predictors of antisocial behavior and antisocial 

behavior itself (i.e., a self-selection effect). As demonstrated, the GAPSM approach can enhance 

our understanding of the true effect of the social processes on antisocial behavior beyond 

contemporary methodologies.  

7.3.2. GAPSM and testing criminal justice policies 

 Similar to testing the theoretical hypotheses of various criminologists, GAPSM can be 

used to evaluate the effectiveness of criminal justice policies on behavioral outcomes at the 

individual level. Specifically, micro-level assessments of criminal justice policies can employ 

GAPSM to evaluate how policies influence a myriad of behavioral outcomes. For example, 

scholars often claim that solitary confinement, a prison based punishment for inmate misconduct, 

results in increases in negative psychological outcomes and negative behavioral outcomes 

(Arrigo and Bullock, 2008; Browne, Cambier, and Agha, 2011; Henderson, 2015; Lucas and 

Jones, 2017). While these claims have been evaluated with SSSMs and are generally 

unsubstantiated (see O’Keefe, Klebe, Stucker, Sturm, and Leggett, 2010; O’Keefe et al., 2013; 



 170 

however see Haney, 2008, 2009), contemporary scholars generally suggest that we do not know 

the true effects of solitary confinement on negative psychological outcomes or negative 

behavioral outcomes (Gendreau and Lebreque, 2016). Specifically, the effects of solitary 

confinement on negative psychological outcomes and negative behavioral outcomes could be 

confounded by genetic and additional environmental factors. Nonetheless, scholars should be 

guided by theoretical reasoning to determine the analytical strategy.   

While speculative, GAPSM is beneficial during assessments of the psychological harm 

because adverse psychological effects have a non-zero h2 (Polderman et al., 2014). Thus, 

corrections scholars could employ GAPSM to approximate the true association between solitary 

confinement and the exacerbation of negative psychological status or subsequent antisocial 

behavior. Although cumbersome, the collection of genetic data could be more accessible than 

finding twins differentially exposed to criminal justice policies. As demonstrated by the example, 

the usefulness of the GAPSM approach for the evaluation of criminal justice policies is 

widespread and can potentially increase our understanding of how criminal justice policies effect 

individual-level outcomes.  

7.3.3. GAPSM and testing treatment effects 

 In addition to testing theoretical perspectives and evaluating policy effects, GAPSM 

offers a methodological advancement for scholars interested in individual level treatment effects. 

As demonstrated by the simulation analysis, GAPSM can be particularly useful during the 

reassessment of the efficacy of treatment programs on subsequent antisocial behavior (given that 

approximately 50 percent of the variance in antisocial behavior is heritable; Polderman et al., 

2015). Specifically, contemporary evaluations of individual level treatment effects often rely on 

PSM and post-matching analyses which do not account for genetic predispositions. As such, the 

observed post-PSM similarities and differences between the treatment and control cases could be 
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biased by confounding factors. To address the potential confounding effects of genetic 

predispositions on the efficacy of treatment programs scholars could employ the GAPSM 

approach. Through the employment of the GAPSM approach, scholars might be able to 

determine the true effectiveness of various treatment programs and the most effective methods 

for treating antisocial behavior.   

 The ability to determine the most effective methods for treating antisocial behavior is 

exceptionally important to the rehabilitation paradigm. Currently, numerous offender 

rehabilitation programs, ranging from religion based programs (e.g., Alcoholics Anonymous) to 

evidence based programs (e.g., Thinking for a Change), claim to effectively reduce antisocial 

behavior amongst offending populations. Nevertheless, given the stark differences between the 

numerous rehabilitation programs, some are likely to be more effective at reducing antisocial 

behavior than others (Lipsey and Cullen, 2007). Furthermore, these effects might vary by group 

(Lipsey and Cullen, 2007). The GAPSM approach can be used to address these rising concerns 

within the rehabilitation paradigm, without the reliance on twin based subsamples. Specifically, 

since exposure to treatment and recidivism likely have non-zero heritability estimates 

(Polderman et al., 2015), scholars can use the GAPSM approach to control for the observed 

genetic and environmental factors potentially confounding the association between the treatment 

condition and recidivism. Exposure to treatment could have a non-zero heritability estimate 

because previous pro- and anti-social behaviors have been shown to contribute to exposure to 

treatment during rehabilitation efforts (Lipsey and Cullen, 2007) and both pro- and anti-social 

behaviors have non-zero heritability estimates (Polderman et al., 2015).  
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 In addition to the proper evaluation of rehabilitation programs, scholars can use the GAPSM 

approach to estimate the potential causal interaction between various phenotypes and exposure to 

rehabilitation programs when predicting recidivism.  

Upon the completion of treatment evaluations with the GAPSM approach, correctional scholars 

can assure policy makers that the effectiveness of the specified rehabilitation program was 

independent of observed genetic and environmental factors.  

7.4. Limitations 

 Although the current dissertation demonstrated the validity of the GAPSM approach four 

limitations associated with both the analyses and the GAPSM approach overall should be 

highlighted. 

7.4.1. Simulation analyses  

 While simulation analyses represent the foremost technique for evaluating the validity of 

a new statistical methodology, these analyses have limitations. At the forefront of these 

limitations is the inability to estimate every specification of the treatment condition in which 

comparisons between the GAPSM approach, PSM, and MZ difference score analysis could have 

been conducted. Specifically, for the sake of brevity, the current evaluation of the GAPSM 

approach is reliant on comparisons across 40 specifications of a treatment condition. Although 

40 specifications of a treatment condition highlight the circumstances in which GAPSM 

approach appears more stringent than an unconfounded PSM and MZ difference score analysis, 

an infinite number of specifications were left unexamined. Of those, the most important 

specifications left unexamined are the ones in which gene-environment interactions have 

occurred. As noted by scholars (e.g., Plomin et al., 2013), gene-environment interactions likely 

contribute to self-selection into a treatment condition and subsequent behavioral outcomes. 

Concerning the GAPSM approach, the current study provided no specifications of a treatment 
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condition that allowed for the comparison of the GAPSM approach, unconfounded PSM, and 

MZ difference score analysis when a gene-environment interaction had occurred. Future research 

should examine how gene-environment interactions influence the observed validity of the 

GAPSM approach when compared to unconfounded PSM and MZ difference score analysis.  

7.4.2. Mathematical proof vs. empirical assessment 

 Although discussed within chapters three and seven, the current project focused primarily 

on providing theoretical and empirical evidence for the GAPSM approach rather than evaluating 

an empirical question with the GAPSM methodology. As such, the analyses are limited in 

demonstrating a true empirical assessment employing the GAPSM approach. While this could be 

completed with the Add Health, I favor the evaluation of a new methodology with a proof of 

concept study rather than a demonstration of an empirical assessment. The primary reason for 

this favoritism is the ability to fix the true point estimate and provide readers with various 

comparisons between the new methodology (i.e., GAPSM) and preexisting statistical techniques. 

Thus, as a proof of concept study the current project provides limited substantive findings and 

the results should only be interpreted as demonstrating the validity of the GAPSM approach. 

Future research should employ the GAPSM approach to evaluate meaningful research questions 

within the social sciences.  

7.4.3. Mathematical proof vs. practical applications 

 Parallel to the preceding limitation, the current dissertation provided a limited discussion 

of applying the GAPSM approach to future empirical analyses. Again, while the simulation 

analysis provided readers with various comparisons, in practice the GAPSM approach should be 

used with caution. Specifically, consistent with concerns surrounding PSM, GAPSM is heavily 

reliant on the selection of appropriate comparison cases and the mis-selection of comparison 

cases could result in biased findings. Furthermore, the ability to demonstrate that the data satisfy 
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the assumptions associated with the GAPSM approach is quite cumbersome and requires 

scholars to understand the counterfactual logic, PSM, molecular genetics, and polygenic risk 

scores.  

 Generally, scholars should conduct a GAPSM analysis using a five-step approach. First, 

select theoretically and empirically supported comparison cases (e.g., individuals who received 

the treatment condition vs. individuals with no-exposure to the treatment condition). Second, 

estimate the polygenic risk score and the propensity score when predicting the treatment 

condition of interest (in one of the two manners described in Chapter 3). Third, visually and 

mathematically evaluate distributional structure of the polygenic risk score and propensity score 

between the treatment and control cases to determine common support. Generally, the visual 

evaluation can be conducted using overlapping histograms, while the mathematical evaluation 

can be estimated using interquartile ranges. Fourth, post-matching balance statistics for the 

polygenic risk score and the environmental covariates should be produced and evaluated. 

Balance can be assessed through overlapping histograms, interquartile ranges, and mean 

difference tests. Finally, post-matching evaluations of the causal association between the 

treatment condition and outcome of interest can be estimated using bivariate mean difference 

tests or bivariate regression models. Although these steps generally correspond to propensity 

score matching analyses, more cumbersome pre- and post-matching evaluations can occur if one 

is employing ordinal or continuous treatment conditions. Furthermore, readings external to the 

current dissertation could provide additional guidance on various visual and empirical methods 

that can be used to demonstrate that the data satisfy the assumptions associated with the GAPSM 

approach (Guo and Fraser, 2015).  
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7.4.4. Data requirements 

 The final limitation pertains not to the current study, but to the GAPSM approach overall. 

Evident by the simulation analyses, the GAPSM approach requires a substantive amount of 

information pertaining to participants’ environmental conditions. For instance, data including, 

but not limited to, the participants’ prenatal care, childhood conditions, peer networks, school 

environments, neighborhood conditions, and previous behavioral manifestations must be 

included within the estimation of the GAPS to ensure that enough variance in the treatment 

condition is predicted by environmental factors. Furthermore, this rich survey information must 

be supplemented by the collection of whole genome data. While we address some of the 

limitations of measuring the environment with the independent estimation of the GAPS (i.e., a 

Bayesian method of ensuring that an appropriate amount of variance is attributed to the 

environment), studies designed to employ the GAPSM approach must be heavily funded or rely 

on secondary data. As such, I encourage scholars currently collecting whole genome data to 

employ rich survey instruments and I encourage scholars currently collecting rich survey data to 

also collect whole genome data. Eventually, secondary data within the social sciences and social 

genomics should be able to encourage the use of the GAPSM approach when evaluating the 

effects of treatment conditions on various outcomes of interest. For instance, Wave 5 of the 

National Longitudinal Study of Adolescent to Adult Health should allow scholars to employ the 

GAPSM approach to evaluate various treatment conditions, given that both polygenic risk scores 

and rich survey data are available to academics. 

7.5. Conclusion 

Overall, GAPSM represents a potentially useful methodology for social scientists when 

examining the causal association between a treatment condition or environmental factor and an 

outcome of interest. To demonstrate this logically structured arguments were made throughout 
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the current dissertation. Chapter 1 offered an outline of the problem in criminal justice, whereas 

Chapter 2 and Chapter 3 provided the reader with a detailed understanding of the counterfactual 

framework and the preexisting methodologies used to address similar or the same problems, 

respectively. Chapter 3 also highlighted the limitations of the preexisting methodologies. At the 

conclusion of Chapter 3, the GAPSM approach was introduced to the reader and explained in 

detail. Chapter 4, Chapter 5, and Chapter 6 afforded a demonstration of the preexisting 

methodologies with a real dataset and an evaluation of the validity of the GAPSM approach 

when compared to the preexisting methodologies. Overall the findings of the evaluation 

demonstrate the conditions in which the GAPSM methodology approaches the true point 

estimate closer than post-PSM models and MZ difference score analyses. These findings support 

the postulation that the GAPSM methodology should be used in certain conditions, while 

unconfounded PSM and MZ difference score analyses should be used in other conditions. In 

closing, and perhaps most importantly, GAPSM represents another tool social scientists can use 

to conduct rigorous genetically sensitive examinations of the etiological influence of 

environmental factors on human behavior.  
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Appendix A: Quantitative Genetic Methodologies A Conceptual Background 

 
 In response to the substantive methodological and technological advancements in the 

latter half of the 20th century, various biologists have employed innovative statistical techniques 

to adjust for a variety of limitations associated with SSSMs (Lynch and Walsh, 1998). Though a 

delay was experienced, these innovative statistical techniques have been implemented in 

contemporary examinations of social behavior (e.g., Glazier, Nadeau, and Aitman, 2002; Lynch 

and Walsh, 1998; Okbay et al., 2016). In sociological scholarship, quantitative genetic 

methodologies highlight the important genetic predispositions commonly associated with a 

variety of TCs. Regarding self-selection, these quantitative genetic methodologies often rely on 

the complexity of evolution, genetic relatedness, and molecular genetics to statistically adjust for 

the unobserved and observed biological predispositions associated with a treatment condition 

(Lynch and Walsh, 1998; Plomin et al., 2013). As provided below, a comprehensive 

understanding of the principals of evolution, genetic relatedness, and molecular genetics 

simplifies the assumptions and mathematics associated with the various statistical techniques 

(presented in subsequent discussions). 

A.1. Evolution: Beyond basic knowledge  

 Similar to Newton’s (1687) theory of universal gravitation and Einstein’s (1920) theory 

of relativity, Darwin’s (1859) theory of evolution has had widespread impact on scholarship for 

multiple centuries (Sulloway, 1982; Mayr, 2009). As noted by historians (Mukherjee, 2017), 

Darwin’s interest in biology dawned when he longed for an answer to his observation of 

systematic patterns within the animal kingdom, which was not satisfied by the simplistic answer 

provided by intelligent design. In an effort to generate a comprehensive understanding of the 

systematic patterns of organisms, Darwin (1859) generated a theoretical explanation indicating 

that the environment was primarily responsible for the emergence of divergent subspecies on 
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different continents. Even though contemporary scholarship often refers to Darwin’s (1859) 

theoretical perspective under a single title, evolution, two theoretical hypotheses were introduced 

in The Origin of Species. These two theoretical hypotheses were that organisms inherit 

phenotypic mutations from previous generations (i.e., heredity) and that selective pressures 

influenced the selection of phenotypic mutations (i.e., natural selection).  

 A.1.1. Heredity  

 The first hypothesis proposed by Darwin (1859) was the concept that organisms inherit 

phenotypic mutations from previous generations, otherwise known as heredity. While addressed 

briefly, Darwin (1859) argued that a mechanism within an organism – single or multi-celled – 

was responsible for the intergenerational correspondence of phenotypic variation. To state 

simply, phenotypic mutations were inherited from prior generations, which in turn generated a 

distribution of phenotypes in the population. Darwin’s (1859) scholarship generally 

circumvented discussions of heredity in an effort limit the theoretical assumptions associated 

with natural selection.  

 Although Darwin (1859) can be credited with the introduction of the heredity hypothesis, 

the foundation of heritability can be attributed to the work of Gregor Mendel. Mendel (1866) was 

made famous by the conclusions he drew from numerous observational and experimental 

assessments of pea plants.61 The accumulation of evidence provided by Mendel’s (1866) 

experiments led to his development of three theoretical assertions – laws – regarding the nature 

of heredity. His first hypothesis – the law of segregation – relied on observational studies in 

which two distinct pea plants – one with smooth and the other with wrinkled seeds – were mated. 

The offspring were then subjected to asexual reproduction, which yielded an interesting pattern 

of smooth and wrinkled seeds in the second generation of offspring. Mendel discovered that ¾ of 

                                                
61 Gregor Mendel’s research did not become famous until after his death. 



 199 

the seeds from the second generation were smooth, whereas ¼ of the seeds were wrinkled. From 

this Mendel (1866) hypothesized that every individual inherited two copies of the same trait, one 

of which was dominant (e.g., observed at a higher probability than the recessive copy) while the 

other was recessive (e.g., observed at a lower probability than the dominate copy).  

The second hypothesis of heredity proposed by Mendel (1866) was the law of 

independent assortment. The law of independent assortment maintains that one trait cannot 

influence the probability of inheriting another trait. For example, in observation of Mendel’s pea 

plants, the inheritance of smooth seeds and smooth leaves would occur independently of one 

another.62 Mendel’s third hypothesis on heredity was the law of dominance, which essentially 

argued that dominate phenotypes will always conceal the effects of recessive phenotypes. 

Regarding Mendel’s pea plants, the breeding of one pea plant with smooth seeds and the other 

with wrinkled seeds will always result in the same distribution of phenotypes in subsequent 

generations (i.e., ¾ of the seeds from the second generation were smooth and ¼ of the seeds 

were wrinkled).  

In response to Darwin’s (1859) and Mendel’s (1866) work, August Weismann (1893) 

published “The germ-plasm: A Theory of Heredity”, which developed a theoretical explanation 

for the consistency between organisms.63 Weismann (1893) theorized that cells –both single-

celled and multi-celled organisms – were comprised of four hierarchical levels: Biophors, 

Determinants, Ids, and Idants. At the lowest level were biophors, which referred to the chemical 

molecules comprising the whole cell. Biophors determined the metabolic and growth rate of the 

cell. At the second lowest level were determinants, which highlighted by the name, referred to 

                                                
62 Notably, contemporary scholarship has illustrated that there are exceptions to Mendel’s law of independent 
assortment (Reich et al., 2001). The primary exception occurs when genes are inherited together at a non-random 
probability, which is also termed linkage disequilibrium (Reich et al., 2001). 
63 Notably, due to the obscurity of Mendel’s (1866) publication, Mendel had limited influence on Weismann’s 
(1893) work. Nevertheless, while Weismann (1893) did not reference Mendel’s scholarship, his work is a clear 
advancement upon Mendel’s (1866) scholarship.  
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the substances that determined the phenotypic variation of a cell. This concept remained 

consistent when discussing multi-celled organisms. At the two highest levels – Ids and Idants – 

Weismann (1893) suggested that Ids were the aggregate of many determinants and Idants were 

the aggregate of many Ids. The conceptualization of Ids was partially consistent with genes and 

the conceptualization of Idants would be comparable to the contemporary concept of 

chromosomes (Morgan, 1915).  

In addition to theorizing that the mechanism of heredity was contained in cells, 

Weismann (1893) offered important insight into sexual reproduction. Weismann (1893) 

theorized that sex cells only carry half of the Idants (i.e., chromosomes) of each parent and upon 

combination the number of Idants in a given zygote doubles. This hypothesis offered an 

explanation of how subsequent generations inherit traits from both parents. Furthermore, 

Weismann (1893) reinforced his claims by arguing that Ids from past generations are unequally 

allocated to future generations, resulting in an imbalanced representation of phenotypic variation 

from the “1st generation” to the “3rd generation.” Although theoretically viable, Weismann’s 

(1893) claims received limited empirical support until the realization that chromosomes were 

heritable (Van Beneden, 1870; Waldeyer, 1888; Morgan, 1915). 

Further refinement of heredity came upon the heels of Mendelian inheritance during the 

20th century. This movement – often referred to as the modern evolutionary synthesis – was 

brought about upon the publication of various scholarly pieces integrating the concepts put forth 

by Darwin (1859), Mendel (1866), and Weismann (1891; Churchill, 1980 Eldredge, 1985; 

Fisher, 1919; Mayr and Provine, 1998). For example, as outlined by Fisher (1919), Mendel’s 

three laws of inheritance provided theoretical guidelines for empirically estimating the genetic 

variability and relatedness of lineages. In addition to operationalizing genetic variability, Fisher 

(1919) offered an empirical model illustrating how discrete genes – or mutations of the same 



 201 

gene – could function in combination to account for phenotypic variation, later termed as 

additive genetic influence. Furthermore, these mathematical techniques provided direct support 

for synthetization of Darwin (1859), Mendel (1866), and Weismann’s (1891) theoretical 

components regrading heredity. In addition to Fisher (1919), various 20th and 21st century 

scholars have provided insight into heredity (e.g., Mayr, 1991; Mayr and Provine, 1998) and will 

be discussed in subsection 3.2.2.  

A.1.2. Natural Selection: Fitness and Survival 

 The second tenant of evolution put forth by Darwin (1859) was the concept of non-

random selection (i.e., natural selection). Though the term natural selection might allude to 

selection through higher powers, Darwin’s publications exemplified the belief that “natural 

selection” referred directly to environmental selection. To state differently, selection was not a 

function of intentions but rather resulted from variation in exposure to conditions that affected 

the survival and/or reproduction of an organism. As reasoned by Darwin (1859), natural 

selection was the primary mechanism influencing the variation at which phenotypic 

characteristics can be observed within a single species. For example, Darwin asserted that only 

natural selection could account of the variation associated with the beak size of Galapagos 

finches (i.e., Darwin’s Finches).  

 Darwin (1859) further cemented his theory of natural selection by publishing his well-

known book titled: On the origin of species by means of natural selection. Within this book 

Darwin detailed how exposure to divergent environmental factors potentially influenced the 

inheritance of phenotypic mutations in a species, which eventually produced in species 

phenotypic variation. As it should be noted, within the current context the term phenotypic 

variation refers to the distribution of phenotypes in a specified population. Phenotypic mutation 

refers to a phenotypic trait restricted to a small portion of the population. For example, the height 
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distribution of humans can be referred to as phenotypic variation, while one individual’s height 

is a phenotypic mutation.  

 Definitions aside, Darwin’s (1859) natural selection theory illustrated how the interaction 

between randomly emerging phenotypic mutations and environmental conditions can influence 

the phenotypic variation within a population. Due to irregularities in heritability – later 

recognized as random genetic mutations (e.g., Morgan, 1915; Morgan, 1917) – phenotypic 

mutations generally occur randomly throughout a population. As outlined by Darwin (1859) the 

existence of phenotypic mutations ensured the survival of a species by generating variation in the 

susceptibility to disease and mortality. Upon the introduction of phenotypic mutations into a 

species, two environmental mechanisms influence the perseverance of the trait: reproductive 

success and survivability. As outlined by Darwin (1859), reproductive success and survivability 

are the primary mechanisms of natural selection influencing phenotypic variation within a 

species. Consistent with contemporary scholarship (e.g., Dawkins, 1976; Ridley, 1994), Darwin 

(1859) outlined that reproductive success is the foremost factor guiding the natural selection of 

phenotypic mutations.  

 Although a variety of scholars have defined reproductive success (e.g., Agrawal, 2001; 

Crow, 1994; Ridley, 1994), Fisher (1915) provides a definitive understanding of the term. In his 

own words “the [reproductive] success of an animal in the struggle for existence is not measured 

only by the number of offspring which it produces and rears, but also by the probable 

[reproductive] success of these offspring” (Fisher, 1915, pg. 185). This can be further 

contextualized by a simple example; the reproductive success of a single Galapagos finch was 

conditional upon the ability of that finch to produce offspring and that finch’s offspring to 

reproduce. In reference to natural selection, phenotypic mutations can drastically alter 

reproductive success. Alterations in reproductive success are generally captured in measures of 
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reproductive fitness (Dawkins, 1976; Lande and Arnold, 1983; Orr, 2007). Reproductive fitness 

– in contemporary scholarship – is often demarcated into two distinct measures: absolute 

reproductive fitness and relative reproductive fitness (Lande and Arnold, 1983; Orr, 2007; Orr, 

2009; Wilson, 1975). Absolute reproductive fitness generally refers to the number of offspring in 

the subsequent generation possessing the specified phenotypic mutation (Carey, 2003). If the 

phenotypic mutation increases absolute reproductive fitness one would expect to observe an 

increased number of individuals in each subsequent generation possessing said phenotypic 

mutation (Carey, 2003; Lande and Arnold, 1983; Orr, 2007). Relative reproductive fitness is 

indicative of the number of offspring within the subsequent generation possessing the specified 

phenotypic mutation when compared to a reference phenotype (Lande and Arnold, 1983; Maree, 

et al., 2000; Orr, 2009; Wilson, 1975). For example, if the absolute reproductive fitness of fitches 

with long beaks was 100 (i.e., 100 offspring in the subsequent generation had long beaks) and 

the absolute reproductive fitness of fitches with wide beaks was 100 (i.e., 100 offspring in the 

subsequent generation had wide beaks), the relative reproductive fitness of the long beak finches 

would be .50 (i.e., 100/200). Furthermore, the phenotypic variation in the population would be 

.50, where half of the population would possess long beaks and half of the population would 

possess wide beaks. Notably, although the absolute reproductive fitness of a phenotypic mutation 

might increase, the relative reproductive fitness of a phenotypic mutation can increase, remain 

stable, or decrease depending upon the reference phenotype (Lande and Arnold, 1983; Wilson, 

1975).  

The reproductive fitness of a phenotypic mutation is dependent upon mating selection 

and environmental pressures (Alcock, 2009; Dingemanse et al., 2004; Emlen and Oring, 1977). 

For simplicity, the examples discussing mating selection will pertain primarily to mammalian 

species. Due to the substantive maternal investment within mammalian species, the female sex 
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generally dictates the reproductive fitness of phenotypic mutations in males (Geary, 2000; 

Qvarnstrom and Price, 2001; Trivers and Willard, 1973). Within humans, females generally 

select mates that possess phenotypic mutations indicative of increased paternal investment and 

increased security (Geary, 1998; Johnstone, 1994; Trivers, 1972). For example, evidence has 

indicated that females generally select mates with similar intelligence levels and financial 

security (Komer, 2015). Furthermore, environmental pressures noticeably effect the relative 

reproductive fitness of phenotypic mutations (Campbell et al., 2005; Gluckman and Hanson, 

2006; Selevan, 2003; Zacharias and Wurtman, 1969). This was first discovered by Dobzhansky 

(1937) who identified that environmental temperature could vary the reproductive success of 

fruit flies. One genetic variation of fruit flies had higher reproductive success in warm climates 

and the other genetic variation of fruit flies had higher reproductive success in cold climates.  

 In combination with reproductive fitness, survivability is the second mechanism driving 

the natural selection of phenotypic mutations. Generally, survivability refers to the increased 

probability of reaching reproductive potential given the distinct phenotypic mutations inherited 

(Darwin, 1859). Note the distinction between the ability to reproduce and reproductive potential, 

where reproductive potential refers to the absolute capacity of offspring that can be generated if 

the environment allowed. Furthermore, as alluded to by the definition, natural selection as a 

function of survival depends primarily on reproduction (Darwin, 1859). If a phenotypic mutation 

results in increased fitness, the pressures of survivability will likely not influence the natural 

selection of the phenotypic mutation (Endler, 1986; Schulter, 1988; Fisher 1999). To state 

differently, when a mutation is selected for fitness purposes, it is not selected for survivability 

purposes (Darwin, 1859; Fisher 1999). While this principal is evident within a variety of species, 

the most common example is displayed in peacocks. The large plumage associated with the 

peacocks’ tail has experienced selection pressures due to the increased fitness associated with the 



 205 

phenotype, but directly harms the survivability of male peacocks in the wild. The order of 

selection factors – fitness before survival – remains valid unless the phenotypic mutation results 

in substantive increases in pre-pubescent mortality (Fisher 1999; Kingslover et al., 2001; Mayr, 

1972). In humans, genetic diseases resulting in mortality preceding puberty rarely have high 

heritability estimates as a function of the reduced likelihood to replicate upon adulthood 

(Polderman et al., 2015). Furthermore, though within species phenotypic variation can attributed 

to selection by survivability, a variety of interspecies phenotypes (i.e., hunger, sleep and thirst) 

can be attributed to selection pressures associated with survival (Fisher 1999).  

 In summary, the two tenants put forth Darwin (1859) and reiterated by subsequent 

scholars have provided the foundational components for contemporary scholarship. Without the 

scholarship described in the current subsection, the fields of behavioral genetics and molecular 

genetics would likely not exist. As demonstrated by the subsequent subsections, scholars have 

employed the tenants put forth Darwin (1859) to conceptualize and operationalize heredity and 

natural selection at the both the phenotypic and the molecular levels. At the phenotypic level, 

scholars (e.g., Morgan, 1915; Plomin et al. 2013) have relied on Mendelian principals in an effort 

to theoretically and empirically establish the etiological structure of heredity and natural 

selection in contemporary species. At the molecular levels, Darwin (1859) and Mendel’s (1868) 

principals provided a guiding light for identifying the mechanisms of heredity and natural 

selection. Overall, the historical establishment of evolution resulted in substantive advancements 

in human knowledge far beyond the predictions of Darwin (1859) and Mendel (1868). 

A.2. Genetic relatedness: Two branches of the same tree 

 Due to the evolutionary history of multi-celled organisms, genetic overlap is common 

across approximately every species on earth. Within a species, substantive genetic overlap can be 

observed. Although most of the overlap corresponds to molecular consistencies (e.g., protein 
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production), the genetic correspondence dictates some phenotypic consistencies as well (e.g., 

thirst, hunger, and fatigue; Plomin et al. 2013). Indicative by the substantive genetic overlap 

within species, common ancestors with high reproductive fitness can account for the majority of 

the correspondence between individuals (Plomin et al. 2013). Whereas genetic overlap accounts 

for the similarities in a species, genetic variation accounts for the divergences between 

individuals of the same species. Whereas the amount of genetic variation in a species fluctuates, 

humans share approximately 99.5% of their genetic makeup. The other .5 percent – 

approximately 3,000 of the 20,000 protein coding genes – accounts for the phenotypic variation 

observed in humans (Mukherjee, 2017). With this knowledge and Mendel’s (1866) laws of 

heritability, contemporary behavioral geneticists have generated a framework conceptualizing 

and operationalizing the genetic relatedness of two humans.  

 To preface our discussion of genetic relatedness, it is necessary to understand that cells – 

of the human species – are diploid, indicating that two copies of each chromosomes are housed 

within each cell (Carey, 2003). The chromosomes housed in each cell were inherited during 

reproduction, where the maternal and paternal reproductive cells donate 23 chromosomes 

respectively (Watson, Baker, Bell, and Gann, 2008). While human cells contain 46 

chromosomes, reproductive cells employ meiosis to randomly select64 the 23 chromosomes that 

will be transmitted to the subsequent generation (Watson et a., 2008). Upon interaction, the 

sperm cell and the egg cell recombined the genetic material, giving the offspring 46 

                                                
64 The above description was a simplistic rendering of a complex process. Specifically, during meiosis, sex cells 
employ a moderately random process to select individual genes – not chromosomes – to transmit to subsequent 
generations. The selection of individual genes alludes to the phenomena that genes – not chromosomes – are the 
mechanism of heredity (Watson et a., 2008; Dawkins, 1976). Notably, although the selection of individual genes 
implies that a random assortment of phenotypes from the grandparents are inherited by the offspring (e.g., Watson et 
a., 2008), recent scholarship has provided evidence suggesting that the selection of genes is not a completely random 
process. Linkage disequilibrium (LD) increases the probability of gene collections inherited by subsequent 
generations. LD increases this probability by non-randomly requiring independent genes to be inherited together 
(Reich et al., 2001). While LD is detrimental to some assumptions associated with molecular genetics, LD has little 
influence on establishing a conceptual framework for genetic relatedness (Reich et al., 2001).  
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chromosomes or two copies of each chromosomes (Watson et a., 2008). With this information, it 

can be assumed that genetic makeup of any offspring is inherited 50 percent from the mother and 

50 percent from the father (Plomin et al., 2013) 

 Developed as a guide for kinship, various behavioral geneticists have adapted the table of 

consanguinity to illustrate the genetic relatedness between two individuals (Plomin et al., 2013). 

The table of consanguinity illustrates genetic relatedness from one individual within the family 

tree. In reference to the “person”, the immediate family members (i.e., parents, full siblings, and 

children) are assumed to share approximately 50 percent of their genetic makeup.65 Furthermore, 

it can be assumed a fraternal twin would share 50 percent of their genetic makeup – in reference 

to said person – and an identical twin would share 100 percent of their genetic makeup (Plomin 

et al., 2013). These assumptions are based on zygosity, where dizygotic twins (DZ; i.e., fraternal 

twins) have two egg cells and two sperm cells and monozygotic twins (MZ; i.e., identical twins) 

share one egg cell and one sperm cell (Carey, 2003).66 Outside of the immediate family, it can be 

assumed that genetic relatedness substantially declines with prior generations and distance 

cousins. For example, each grandparent and great grandparent shares 25 and 12.5 percent of their 

genetic material with the reference person. In reference to the offspring of siblings, it can be 

assumed that a sibling’s offspring shares 25 percent of its genetic material with the person and is 

halved each subsequent generation. This assumption is violated when discussing MZ twins 

(Plomin et al., 2013). Since it can be assumed that MZ twins share 100 percent of their genetic 

makeup, the offspring of one twin shares approximately 50 percent of its genetic material with 

                                                
65 As noted below, this assumption can be violated by assortative mating or the existence of an identical twin sibling.  
66 To provide an overview, MZ twins result from the meiosis of single zygote. Simply, meiosis is the uncommon 
division of a cell, where identical pairs of chromosomes are produced and split from one another to result in the 
development of two identical zygotes. Following the creation of the two identical zygotes, each one develops 
naturally into a pair of identical twins. 
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the other twin (Plomin et al., 2013). In the rare case that MZ twin pairs mate, their offspring 

would be considered genetic siblings (Plomin et al., 2013) 

 When adapted to behavioral genetics, the table of consanguinity provides a detailed 

framework outlining the expression of a single phenotype between family members. For 

instance, it can be assumed that the probability of immediate family members (i.e., individuals 

who share 50 percent of their genetic makeup) possessing a single phenotype would be .50 

(Plomin et al., 2013). Again, this assumption is violated when discussing MZ twins, where the 

probability of expressing a phenotype would be 1.00 (Plomin et al., 2013). It can be speculated 

that deviations from .50 – where the expression between immediate family members on a single 

phenotype is higher or lower – would indicate higher or lower genetic similarity (Plomin et al., 

2013). This simplistic explanation assumes that the phenotype was resulted strictly from genetic 

inheritance and was not influenced by environmental factors.  

 As speculated, two types of environmental factors can influence the probability of 

phenotypic expression between family members: the shared environment and the non shared 

environment. As alluded to by the designations, the shared environment refers to the 

environmental conditions that are mutual between the specified family members, while the non 

shared environment refers to the environmental conditions that are distinct between the family 

members. As noted by scholars (e.g., Barnes, Beaver, and Boutwell, 2011; Barnes et al., 2014), 

the shared environment generally only influences phenotypic expression for siblings, whereas the 

effects of the non shared environment can influence phenotypic expression for every family 

member. The effects of the shared environment are especially important during the establishment 

of phenotypic expression amongst MZ twins (Plomin et al., 2013). As argued by sceptics of 

behavioral genetics (e.g., Barnes et al., 2014), phenotypic expression between MZ twins can 

result from genetic equivalence or the overrepresented environmental equivalence (i.e., the 
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shared environment). As discussed further in sections 3.3.1. and 3.3.2., the conceptual 

framework outlined above provides the foundation for developing the mathematical assumptions 

associated with the ACE decomposition model and MZ difference models.  

A.3. Genes: Mechanisms of heredity 

 During the early 20th century various scholars (e.g., Bridges, 1916; Dobzhansky, 1937; 

Morgan, 1915) debated about the true mechanisms of heredity. Specifically, what was inherited 

by humans and how did natural selection influence the intergenerational transmission of 

phenotypes. Various perspectives argued that the chromosome – similar to Weismann (1891) – 

and the individual could be the mechanism of heredity (Darwin, 1968). While these discussions 

waged Watson and Crick (1953) discovered deoxyribonucleic acid (DNA). This discovery 

eventually led to the identification of discrete units of inheritance – following Mendel’s (1866) 

guidance – and the publication of two of theoretical appraisals of contemporary evolution: 

Adaptation and Natural Selection (1966), and The Selfish Gene (1976). With similar intentions, 

both George Williams (1966) and Richard Dawkins (1976) reevaluated evolutionary theory in an 

effort to cement genes as the mechanisms of heredity.  

 Williams (1966) and Dawkins (1976) put forth theoretical hypotheses that were founded 

upon three concrete evolutionary principals. First, evident by Mendelian inheritance, to 

guarantee heredity a molecular commonalty between generations must exist. Notably, although 

chromosomes were theoretically viable, Dawkins (1976) argued that it was unlikely for an 

individual chromosome to be the mechanism of inheritance. Furthermore, evident by 

contemporary scholarship (e.g., Boehnke, 1991; Roach et al., 2010), the exact replication of 

specific genes can be observed in subsequent generations. At other molecular levels (e.g., 

chromosomes, epigenetics) exact replications cannot be observed in subsequent generations. 
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With this position, Williams (1966) and Dawkins (1976) argued that for Mendelian inheritance 

to be valid, genes were the only possible mechanism of inheritance.  

 Second, in line with the principals of evolution, the ability to replicate must exist and be 

inherited. From such position, Dawkins (1976) argued that genes can explain the inherited ability 

to replicate within a species. This argument can be contextualized around the hypothesis that 

only genes can be inherited by subsequent generations, creating the viable conclusion that genes 

cause the desire to reproduce. To state differently, it can be theorized that only replicated 

molecules can produce the desire to replicate within a species. Consistent with this hypothesis is 

the knowledge that chromosomes – or other phenotypic/molecular factors – are not directly 

replicated in subsequent generations (unless asexually; Carey, 2003; Dawson et al., 2002; 

Morely et al., 2004). Furthermore, guided by the same logic, Dawkins (1976) argues that genes 

can almost definitely ensure their presence in subsequent generations by increasing the desire to 

replicate.  

 Finally, Williams (1966) and Dawkins (1976) argued that only genes as the mechanism 

of heritability can explain the pervasiveness of altruism in familial lineages. If the organism itself 

was the replicator than altruism would only be reserved for direct descendants. Nevertheless, 

evidence indicates that most species are altruistic towards non-descendants, suggesting a 

molecular mechanism of inheritance (Rushton, 1989). Consistent with this evidence, Dawkins 

(1976) indicated that the display of altruism towards one’s lineage general suggests that there is 

an expected reproductive value for one’s own genes when regarding relatives. For example, 

Dawkins (1976) argues that the likelihood of subsequent generations receiving an individual’s 

genes from a sibling is higher than a third cousin, which is consistent with the average amount of 

altruism displayed towards each of these family members. While theoretical when proposed, the 

position of Williams (1966) and Dawkins (1976) has been entrenched within behavioral and 
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molecular genetics and has guided a substantive number of empirical endeavors, including the 

human genome project.  

 Consistent with the hypotheses proposed by Williams (1966) and Dawkins (1976), the 

field of molecular genetics has demonstrated the importance of genes during the establishment of 

heredity, phenotypic mutations, and phenotypic variation. To detail, molecular genetics is the 

examination of the association between single and multiple genetic alleles – or mutations – and 

phenotypic variation. Genes code for proteins which perform one or multiple bodily functions 

(Mukherjee, 2017; Strachan and Read, 2011). An allele is the common genetic variant of a single 

gene and a mutation is all other genetic variants of a single gene (Strachan and Read, 2011).67 

Generally, genetic variants (i.e., alleles or mutations) occur as either single nucleotide 

polymorphism (SNP) or multi-nucleotide polymorphism (MNP). SNPs and MNPs are easily 

understood with a simple demonstration (Strachan and Read, 2011). DNA is made up of four 

nucleobases: adenine (A), cytosine (C), guanine (G), and thymine (T), where only A can bond to 

T and C can bond to G (Carey, 2003). If we take Gene X, which as an allele is coded as 

ATGGTTCAAG68, a SNP would be ATGATTCAAG (the fourth nucleobase bond was changed 

from a G to an A). A MNP would be ATGAGTCAAT, where multiple nucleobase bonds were 

changed (Strachan and Read, 2011). When SNPs and MNPs do exist, they code for the same 

protein as the identified allele, but generate a different rate of production (Beaver, 2009). If the 

SNPs or MNPs results in the creation of a different protein it is labeled as a missense mutation 

(Strachan and Read, 2011). 

 While seemingly negligible SNPs and MNPs have enormous effects on the appearance of 

phenotypic mutations and the observed phenotypic variation in a population (Strachan and Read, 

                                                
67 Please note that polymorphisms exist within humans, where two or more genetic alleles are equally common 
within the population. At this point neither can be labeled as the genetic mutation (Carey, 2003).  
68 Consistent with molecular genetics, the matches are not provided because they can be simply deduced by knowing 
the initial (Watson et al., 2008). 
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2011). Furthermore, genes can influence the appearance of phenotypic mutations through 

dominant69 and additive effects. One such case of a dominant genetic effect corresponds to the 

appearance of red hair, where mutations of a single gene influence the observed phenotypic 

variation (Puig-Butille et al., 2017). Specifically, when an individual inherits two recessive 

copies of the MC1R gene mutations the probability of inheriting red hair increases substantially 

(Puig-Butille et al., 2017). Divergent from dominant genetic effects, additive genetic effects 

correspond to the idea that multiple genes – or divergent mutations – influence the observed 

phenotypic variation. Recent scholarship has provided a detailed example of the additive genetic 

factors influencing educational attainment in the population (Rietveld et al., 2013). Furthermore, 

these results have been supported by subsequent results (Davies et al., 2016; Okbay et al., 2016). 

The concepts of dominant and additive genetic effects has established a vast array of empirical 

scholarship on the association between molecular genetics and the observed phenotypic 

variation.  

A.3.1. Candidate Gene Research 

 Preceding the human genome project, the primary method of establishing an association 

between molecular genetic factors and phenotypic variation was through candidate gene research 

(Beaver, 2009). A candidate gene is a coding sequence of DNA that is hypothesized to influence 

the phenotype of interest (Beaver, 2009). The expectation is generally developed from prior 

theoretical or empirical scholarship. Commonly, scholars employ candidate genes to examine the 

interaction between genetic and environmental factors on the establishment of phenotypic 

variation (Beaver et al., 2007; Risch et al., 2009). One of the foremost examinations of candidate 

genes was conducted Caspi and colleagues (2003). Through reliance on prior scholarship, Caspi 

                                                
69 Please note that within the current context dominant genetic effect refers the hypothesis that one gene (and its 
alleles) causes the observed population variation within a single phenotype. This term is divergent from Mendel’s 
(1866) dominant and recessive alleles, which refers to the effects individual alleles on the observed phenotype.  
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and colleagues (2003) examined the association between two polymorphisms – both alleles can 

be commonly observed in the population – of the 5-HTT gene (which is a well-known 

transcription site for the serotonin transporter) and subsequent depression. The two 

polymorphisms tested were the short and long alleles, where the short polymorphism was 

associated with a lower transcriptional efficiency – reduced production of the serotonin 

transporter – than the long polymorphism. The findings of the regression analyses indicated that 

the short polymorphism had limited direct effects on depression, but the interaction between 

short polymorphism and the number of stressful life events drastically increased the probability 

of depression compared to individuals with one or two long polymorphisms. Even though this 

scholarship has been valuable, the assumptions associated with candidate genes often result in 

the inability to replicate the findings (e.g., Risch et al., 2009). Precisely, the inability to replicate 

findings is often a function of the assumption that the candidate gene has a direct dominate effect 

on the phenotype of interest (Davies et al., 2016; Okbay et al., 2016).  
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Appendix B: Coding Schemes for Measures of Interest 
 
 
Dependent Variables (Add Health reference ID):  
 
Delinquency (Wave IV; Barnes and Beaver, 2010; Nedelec, Park, and Silver, 2016; Piquero and 
Brezina, 2001) 
 
1) In the past 12 months, how often did you go deliberately damage property that didn’t belong 

to you? (H4DS1) 
2) In the past 12 months, how often did you steal something worth less than $50? (H4DS6) 
3) In the past 12 months, how often did you buy, sell, or hold stolen property? ( H4DS8) 
4) In the past 12 months, how often did you use someone else’s credit card, bankcard, or 

automatic teller card without their permission or knowledge? (H4DS9) 
5) In the past 12 months, how often did you deliberately write a bad check? (H4DS10) 
6) In the past 12 In the past 12 months, how often did you steal something worth more than $50 

(H4DS2) 
7) In the past 12 months, how often did you go into a house or building to steal something 

(H4DS3) 
8) In the past 12 months, how often did you use or threaten to use a weapon to get something 

from someone (H4DS4) 
9) In the past 12 months, how often did you sell marijuana or other drugs (H4DS5) 
10) In the past 12 months, how often did you take part in a physical fight where a group of your 

friends was against another group (H4DS7) 
11) In the past 12 months, how often did you hurt someone badly enough in a physical fight that 

he or she needed care from a doctor or nurse (H4DS12) 
(0 = never; 1 = 1 or 2 times; 2 = 3 or 4 times; 3 = 5 or more times) 
 
Drug Use (Standardized; Wave IV; Barnes and Beaver, 2010; Nedelec, Park, and Silver, 2016; 

Piquero and Brezina, 2001) 
 
1) During the past 30 days, on how many days did you smoke cigarettes? (H4TO5) 
2) During the past 30 days, on how many days did you drink alcohol? (H4TO35) 
3) During the past 12 months, on how many days did you use marijuana? (H4TO70) 
4) During the past 12 months, on how many days did you use [favorite drug]? (H4TO98) 
(0 = never, 1 = one or more times) 
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Treatment Conditions (Add Health reference ID):  
 
Intelligence (Wave III): 
 
1) Intelligence (pvtstd3c) 
(Measured continuously) 
 
Educational Attainment (Wave III): 
 
1) What is the highest grade or year of regular school you have completed? (H3ED1) 
(0 = 12th grade or less; 1 = 1 enrolled in at least 1 year of college or more) 
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Environmental Covariates (Add Health reference ID; Boutwell and Beaver, 2008; Beaver et al., 
2009; Markowitz, and Salvatore, 2012; Barnes, 2012):  
 
Race (Wave I) 
1) Interviewer: Please Code the race of the respondent from your own observation alone (H1GI9) 

(1 = White; 2 = Black/African American; 3 = American Indian; 4 = Asian or Pacific Islander, 
5 = Other) 
 

Gender (Wave I) 
1) Interviewer, please confirm that R’s sex is accurate (BIO_SEX).  

(1 = Male, 2 = Female) 
 

Age (Wave I) 
1) What is your Birth year (H1GI1Y) 
2) Interviewer: Please Identify the year of the interview (IYEAR) 
 
Parental Income (Wave I) 
 
1) About how much total income, before taxes did your family receive in 1994? Include your 

own income, the income of everyone else in your household, and income from welfare 
benefits, dividends, and all other sources. (PA55) 

(Measured Continuously)  
 
Parental Employment Status (Wave I) 
 
1) Do you work outside the home? (PA13) 
(0 = no [skip to PA14]; 1 = yes [skip to PA17]) 
2) In the past 12 months, have you worked outside the home? (PA14) 
(0 = no; 1 = yes [skip to PA15]) 
3) Were you employed full time at your last job? (PA15) 
(0 = no; 1 = yes) 
4) Are you employed full time? (PA17) 
(0 = no; 1 = yes) 
 
Parental Education (Wave I) 
 
1) How far did you go in school? (PA12) 
 (0 = less than college; 1 = went to college, but did not graduate) 
 
Maternal Conflict (standardized; Wave I; # = 	 .85) 
 
1) How close do you feel to your mother? (H1WP9) (reverse recoded) 
2) How much do you think she cares about you? (H1WP10) (reverse recoded) 

(5 = Not at all; 4 = very little; 3 = somewhat; 3 = quite a bit; 1 = very much)  
 Reverse recoded 
 

3) Most of the time, your mother is warm and loving toward you? (H1PF1) 
4) Your mother encourages you to be independent?  (H1PF2) 
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5) When you do something wrong that is important, your mother talks about it with you and helps 
you understand why it is wrong? (H1PF3) 

6) You are satisfied with the way your mother and you communicate with each other? (H1PF4) 
7) Overall, you are satisfied with your relationship with your mother? (H1PF5)  

(1 = Strongly Agree; 2 = Agree; 3 = neither agree nor disagree 4= Disagree; 5 = Strongly 
Disagree) 

 
Paternal Conflict (standardized; Wave I; # = 	 .89) 

 
1) How close do you feel to your father? (H1WP13) (reverse recoded) 
2) How much do you think he cares about you? (H1WP14) (reverse recoded) 

 (5 = Not at all; 4 = very little; 3 = somewhat; 3 = quite a bit; 1 = very much)  
Reverse recoded 

 
3) Most of the time, your father is warm and loving toward you (H1PF23) 
4) You are satisfied with the way your father and you communicate with each other. (H1PF24) 
5) Overall, you are satisfied with your relationship with your father. (H1PF25)  

(1 = Strongly Agree; 2 = Agree; 3 = neither agree nor disagree 4= Disagree; 5 = Strongly 
Disagree) 

 
School Attachment (Standardized; Wave 1;	# = 	 .78) 
 
1) How often did you have trouble, Getting along with teachers (H1ED15) (reverse recoded) 
2) How often did you have trouble, paying attention in school (H1ED16) (reverse recoded) 
3) How often did you have trouble, getting your homework done (H1ED17) (reverse recoded) 
4) How often did you have trouble, getting along with other students (H1ED18) (reverse recoded) 
(5 = never; 4 = just a few times; 3 = about once a week; 2= almost every day; 1 = every day) 
 
5) Agree or Disagree, You feel close to people at your school (H1ED19) 
6) Agree or Disagree, you feel like you are part of your school (H1ED20) 
7) Agree or Disagree, you are happy to be at your school (H1ED22) 
8) Agree or Disagree, the teachers at your school treat student fairly (H1ED23) 
9) Agree or Disagree, you feel safe in your school (H1ED24) 
(1 = Strongly agree; 2 = agree; 3 = neither agree nor disagree; 4 = disagree; 5 = strongly 
disagree) 
 
Social Support (Wave I; # = 	 .85) 
 
1) How much do you feel that adults care about you? (H1PR1) 
2) How much do you feel that your teachers care about you? (H1PR2) 
3) How much do you feel that your parents care about you ?(H1PR3) 
4) How much do you feel that your friends care about you? (H1PR4) 
5) How much do you feel that people in your family understand you? (H1PR5) 
6) (Reverse coded) How much do you feel that you want to leave home (H1PR6) 
7) How much do you feel that you and your family have fun together? (H1PR7) 
8) How much do you feel that your family pays attention to you? (H1PR8) 
(1 = Not at all; 2 = very little; 3 = somewhat; 4 = Quite a bit; 5 = Very much) 
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Delinquent Drug Use (Wave I; # = 	 .76) 
 
1) Of your 3 best friends, how many smoke at least 1 cigarette a day? (H1TO9)  
2) Of your 3 best friends, how many drink alcohol at least once a month? (H1TO29) 
3) Of your 3 best friends, how many use marijuana at least once a month? (H1TO33) 
(0 = no friends; 1 = 1 friend; 2 = 2 friends; 3 = 3 friends) 
 
Baseline Delinquency (Wave 1) 
 
1) In the past 12 months, how often did you paint graffiti or signs on someone else’s property or 

in a public place? (h1ds1) 
2) In the past 12 months, how often did you deliberately damage property that didn’t belong to 

you? (h1ds2) 
3) In the past 12 months, how often did you lie to your parents or guardians about where you had 

been or whom you were with? (h1ds3) 
4) In the past 12 months, how often did you take something from a store without paying for it?  

(h1ds4) 
5) In the past 12 months, how often did you run away from home? (h1ds7) 
6) In the past 12 months, how often did you steal something worth less than $50? (h1ds13) 
7) In the past 12 months, how often did you act loud, rowdy, or unruly in a public place? 

(h1ds15) 
(0 = never; 1 = 1 or 2 times; 2 = 3 or 4 times; 3 = 5 or more times) 
 
8) In the past 12 months, how often did you hurt someone badly enough to need bandages or care 

from a doctor or nurse? (h1ds6) 
9) In the past 12 months, how often did you drive a car without the owner’s permission? (h1ds8) 
10) In the past 12 months, how often did you steal something worth more than $50? (h1ds9) 
11) In the past 12 months, how often did you go into a house or building to steal something? 

(h1ds10) 
12) In the past 12 months, how often did you threaten to use a weapon to get something from 

someone? (h1ds11) 
13) In the past 12 months, how often did you sell marijuana or other drugs? (h1ds12) 
14) In the past 12 months, how often did you take part in a fight where a group of your friends 

was against another group? (h1ds14) 
(0 = never; 1 = 1 or 2 times; 2 = 3 or 4 times; 3 = 5 or more times) 
 
Baseline Drug Use (Wave 1) 
 
1) Have you ever tried cigarette smoking, even just 1 or 2 puffs? (h1to1) 
2) Have you had a drink of beer, wine, or liquor – not just a sip or a taste of someone else’s drink 

– more than 2 or 3 times in your life? (h1to12) 
(0 = No, 1 = Yes) 
3) How old were you when you tried marijuana for the first time? (h1to30) (0 = never; 1 = Tried 

marijuana once [ ages 1 thru 18 coded as “1”]) 
4) How old were you when you tried any kind of cocaine, including powder,  

freebase, or crack cocaine for the first time? (h1to34) (0 = never; 1 = Tried marijuana 
once [ ages 1 thru 18 coded as “1”]) 

5) How old were you when you tried inhalants, such as glue or solvents for the first time? 
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(h1to37) (0 = never; 1 = Tried marijuana once [ ages 1 thru 18 coded as “1”]) 
6) How old were you when you tried any other type of illegal drug such as LSD, PCP, ecstasy, 

mushrooms, speed, ice, heroin, or pills without a doctor’s prescription? (h1to40) (0 = 
never; 1 = Tried marijuana once [ ages 1 thru 18 coded as “1”]) 
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Appendix C: Assessing the Mean Differences Between Twin Subsamples and Full Sample 
 
Table C1: Descriptive statistics for the MZ twin sample and the full sample. 
  MZ Twins Full Sample t-value ZD N !" SD Range N !" SD Range 
Dependent Variables (Wave IV)           

Delinquency  480 .04 .15 .00,1.39 15,158 .07 .25 .00,5.60 -4.66* .162 
Drug Use  477 -.18 1.19 -1.60,3.45 15,045 .01 1.25 -1.60,3.45 -3.40* .154 

Treatment Conditions (Wave III)           
Intelligence  458 96.88 16.33 7,122 14,194 98.53 17.11 7,122 -2.13* .099 
Educational Attainment  472 .54 .50 0,1 14,711 .54 .50 0,1 .05 .002 

Covariates (Wave I)           
Age 570 16.18 1.59 13,19 20,158 16.15 1.74 12,21 .47 .019 
Non-White  570 .36 .48 0,1 20,134 .38 .49 0,1 -1.15 .049 
Male 570 .50 .50 0,1 20,173 .49 .50 0,1 .17 .007 
Parent Income 425 49.37 63.05 0,800 14,926 45.64 51.25 0,999 1.21 .065 
Parent Employment Status 485 .66 .48 0,1 17,124 .62 .49 0,1 1.76 .080 
Parent Education 477 .53 .50 0,1 17,050 .42 .49 0,1 4.39* .205 
Maternal Conflict  518 -.08 1.12 -1.35,4.23 18,868 .01 1.28 -1.35,7.49 -1.62 .067 
Paternal Conflict 403 -.18 1.19 -1.37,4.72 14,000 .01 1.38 -1.37,6.12 -3.00* .141 
School Attachment 560 .05 1.10 -3.89,2.06 19,719 -.01 1.08 -4.88,2.06 1.05 .046 
Social Support  559 8.09 1.18 3.75,10.00 19,533 7.98 1.19 2,10 2.18* .093 
Peer Drug Use 554 .85 .90 0,3 19,474 .85 .89 0,3 .09 .004 
Baseline Delinquency 566 .53 .73 0,6 19,844 .55 .69 0,6 -.71 .031 
Baseline Drug Use 559 .49 .44 0,2 19,662 .53 .47 0,2 -2.11* .088 

Notes: In the current context, the full sample includes same sex and different sex DZ twins. 
*p < .05 
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Table C2: Descriptive statistics for the same sex MZ/DZ twin sample and the full sample. 

  Same Sex MZ/DZ Twins Full Sample t-value ZD N !" SD Range N !" SD Range 
Dependent Variables (Wave IV)           

Delinquency  888 .04 .15 .00,2.80 14,750 .07 .25 .00,5.60 -2.05* .161 
Drug Use  876 -.18 1.19 -1.60,3.45 14,646 .01 1.25 -1.60,3.45 -.84 .151 

Treatment Conditions (Wave III)           
Intelligence  839 96.88 16.33 7,122 13,813 98.56 17.16 7,122 -2.56* .101 
Educational Attainment  871 .54 .50 0,1 14,312 .54 .50 0,1 -.74 .001 

Covariates (Wave I)           
Age 1,060 16.18 1.59 12,20 19,668 16.16 1.74 12,21 1.54* .016 
Non-White  1,060 .36 .48 0,1 19,644 .39 .49 0,1 -.87 .049 
Male 1,060 .50 .50 0,1 19,683 .49 .50 0,1 1.36 .009 
Parent Income 803 49.37 63.05 0,800 14,548 45.67 51.69 0,999 .60 .064 
Parent Employment Status 912 .66 .48 0,1 16,697 .62 .49 0,1 2.52* .082 
Parent Education 904 .53 .50 0,1 16,623 .42 .49 0,1 4.16* .207 
Maternal Conflict  980 -.08 1.12 -1.35,6.36 18,406 .01 1.28 -1.35,7.49 -1.99* .069 
Paternal Conflict 738 -.18 1.94 -1.37,6.12 13,665 .01 1.39 -1.37,6.12 -2.35* .141 
School Attachment 1,040 .05 1.10 -3.89,2.06 19,239 -.01 1.08 -4.88,2.06 .50 .045 
Social Support  1,038 8.09 1.18 3,10 19,054 7.98 1.20 2,10 2.45* .094 
Peer Drug Use 1,023 .85 .90 0,3 19,005 .85 .89 0,3 -.13 .004 
Baseline Delinquency 1,047 .53 .73 0,6 19,363 .55 .70 0,6 -.98 .032 
Baseline Drug Use 1,038 .49 .44 0,2 19,183 .53 .47 0,2 -1.72 .088 

Notes: In the current context, the full sample includes different sex DZ twins. 
*p < .05 
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Table C3: Descriptive statistics for the different sex MZ/DZ twin sample and full sample. 

  Different Sex MZ/DZ Twins Full Sample t-value ZD N !" SD Range N !" SD Range 
Dependent Variables (Wave IV)           

Delinquency  1,229 .04 .15 .00,2.79 14,409 .07 .25 .00,5.60 -2.67* .070 
Drug Use  1,216 -.18 1.19 -1.60,3.45 14,306 .01 1.25 -1.60,3.45 -.60 .058 

Treatment Conditions (Wave III)           
Intelligence  1,144 96.88 16.33 7,122 13,508 98.60 17.19 7,122 -3.09* .103 
Educational Attainment  1,184 .54 .50 0,1 13,999 .54 .50 0,1 -.45 .001 

Covariates (Wave I)           
Age 1,461 16.18 1.59 12,20 19,267 16.16 1.75 12,21 -2.01* .015 
Non-White  1,460 .36 .48 0,1 19,244 .38 .49 0,1 -.01 .047 
Male 1,461 .50 .50 0,1 19,282 .49 .50 0,1 1.31 .009 
Parent Income 1,117 49.37 63.05 0,800 14,234 45.71 51.88 0,999 .13 .063 
Parent Employment Status 1,262 .66 .48 0,1 16,347 .62 .49 0,1 1.51 .081 
Parent Education 1,258 .53 .50 0,1 16,269 .42 .49 0,1 4.66* .209 
Maternal Conflict  1,361 -.08 1.12 -1.35,6.36 18,025 .01 1.28 -1.35,7.49 -2.94* .071 
Paternal Conflict 1,007 -.18 1.19 -1.37,6.12 13,396 .01 1.38 -1.37,6.12 -2.07* .142 
School Attachment 1,431 .05 1.10 -4.30,2.06 18,848 -.01 1.08 -4.88,2.06 .43 .045 
Social Support  1,426 8.09 1.18 3,10 18,666 7.97 1.20 2,10 2.78* .096 
Peer Drug Use 1,409 .85 .90 0,3 18,619 .85 .89 0,3 -1.12 .002 
Baseline Delinquency 1,443 .53 .73 0,6 18,967 .55 .70 0,6 -2.24* .034 
Baseline Drug Use 1,431 .49 .44 0,2 18,790 .53 .47 0,2 -3.10* .091 

Notes: In the current context, the full sample includes anyone who was not identified as a twin. 
*p < .05 
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Appendix D: 40 Specifications of the Treatment Condition. 
 
First 13 Specifications:  

1. t = .05*a + .45*e + .45*c + .04*E 
2. t = .10*a + .43*e + .43*c + .04*E 
3. t = .15*a + .40*e + .40*c + .04*E 
4. t = .20*a + .38*e + .38*c + .04*E 
5. t = .25*a + .35*e + .35*c + .04*E 
6. t = .30*a + .33*e + .33*c + .04*E 
7. t = .35*a + .30*e + .30*c + .04*E 
8. t = .40*a + .28*e + .28*c + .04*E 
9. t = .45*a + .25*e + .25*c + .04*E 
10. t = .50*a + .23*e + .23*c + .04*E 
11. t = .55*a + .20*e + .20*c + .04*E 
12. t = .60*a + .18*e + .18*c + .04*E 
13. t = .65*a + .15*e + .15*c + .04*E 

Second 13 Specifications:  
14. t = .05*a + .68*e + .22*c + .04*E 
15. t = .10*a + .64*e + .21*c + .04*E 
16. t = .15*a + .60*e + .20*c + .04*E 
17. t = .20*a + .56*e + .19*c + .04*E 
18. t = .25*a + .53*e + .18*c + .04*E 
19. t = .30*a + .49*e + .16*c + .04*E 
20. t = .35*a + .45*e + .15*c + .04*E 
21. t = .40*a + .41*e + .14*c + .04*E 
22. t = .45*a + .38*e + .13*c + .04*E 
23. t = .50*a + .34*e + .11*c + .04*E 
24. t = .55*a + .30*e + .10*c + .04*E 
25. t = .60*a + .26*e + .09*c + .04*E 
26. t = .65*a + .23*e + .08*c + .04*E 

Third 13 Specifications:  
27. t = .05*a + .22*e + .68*c + .04*E 
28. t = .10*a + .21*e + .64*c + .04*E 
29. t = .15*a + .20*e + .60*c + .04*E 
30. t = .20*a + .19*e + .56*c + .04*E 
31. t = .25*a + .18*e + .53*c + .04*E 
32. t = .30*a + .16*e + .49*c + .04*E 
33. t = .35*a + .15*e + .45*c + .04*E 
34. t = .40*a + .14*e + .41*c + .04*E 
35. t = .45*a + .13*e + .38*c + .04*E 
36. t = .50*a + .11*e + .34*c + .04*E 
37. t = .55*a + .10*e + .30*c + .04*E 
38. t = .60*a + .09*e + .26*c + .04*E 
39. t = .65*a + .08*e + .23*c + .04*E 

Point of Equivalence 
40. t = .32*a + .32*e + .32*c + .04*E
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Appendix E: Supplemental Results for Study 2 
 
 

Table E1: Balance statistics for participants matched with nearest neighbor matching (caliper = .05) on 
educational attainment (Wave III). 

DV: Educational Attainment 
(Wave III) 

Did Not Attend One 
Year of College (c) 

Attended One Year of 
College (t) % Bias t-value 

!" !" 
Covariates (Wave I)     

Age 15.920 15.886 -1.981 -.636 
Non-White  .295 .302 1.495 .489 
Male .501 .516 3.037 1.014 
Parent Income 44.818 46.864 3.280 1.941 
Parent Employment Status .604 .604 -.184 -.061 
Parent Education .378 .366 -2.433 -.833 
Maternal Conflict  -.047 -.078 -2.653 -.869 
Paternal Conflict -.031 -.035 -.352 -.114 
School Attachment .059 .043 -1.603 -.514 
Social Support  8.075 8.082 .658 .211 
Peer Drug Use .797 .809 1.421 .444 
Baseline Delinquency .525 .535 1.659 .504 
Baseline Drug Use .504 .512 1.516 .494 

N 2,250 2,250   

Notes: Caliper for the nearest neighbor matching was set at p < .05. (c) indicates the control cases and (t) indicates 
the treatment cases. 
* p < .05 
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Table E2: Balance statistics for participants matched with nearest neighbor matching (caliper = .01) on 
educational attainment (Wave III). 

DV: Educational Attainment 
(Wave III) 

Did Not Attend One 
Year of College (c) 

Attended One Year of 
College (t) % Bias t-value 

!" !" 
Covariates (Wave I)     

Age 15.909 15.911 .163 .052 
Non-White  .292 .295 .707 .231 
Male .511 .513 .271 .090 
Parent Income 45.047 47.240 3.517 1.970* 
Parent Employment Status .611 .611 .093 .037 
Parent Education .380 .364 -3.378 -1.148 
Maternal Conflict  -.079 -.042 3.095 1.007 
Paternal Conflict -.047 -.024 1.771 .572 
School Attachment .071 .038 -3.363 -1.084 
Social Support  8.085 8.066 -1.831 -.586 
Peer Drug Use .789 .810 2.633 .819 
Baseline Delinquency .515 .542 4.483 1.371 
Baseline Drug Use .502 .518 3.686 1.206 

N 2,221 2,221   

Notes: Caliper for the nearest neighbor matching was set at p < .01. (c) indicates the control cases and (t) indicates 
the treatment cases. 
* p < .05 
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Table E3: Balance statistics for participants matched with nearest neighbor matching (caliper = .001) on 
educational attainment (Wave III). 

DV: Educational Attainment 
(Wave III) 

Did Not Attend One 
Year of College (c) 

Attended One Year of 
College (t) % Bias t-value 

!" !" 
Covariates (Wave I)     

Age 15.970 15.894 -4.568 -1.289 
Non-White  .287 .288 .256 .075 
Male .504 .505 .229 .068 
Parent Income 46.067 47.760 2.714 1.437 
Parent Employment Status .607 .608 .353 .104 
Parent Education .412 .404 -1.618 -.481 
Maternal Conflict  -.079 -.085 -.482 -.140 
Paternal Conflict -.050 -.039 .889 .254 
School Attachment .094 .068 -2.651 -.758 
Social Support  8.103 8.071 -2.975 -.842 
Peer Drug Use .782 .782 .024 .007 
Baseline Delinquency .500 .529 4.912 1.369 
Baseline Drug Use .492 .509 3.803 1.123 

N 1,754 1,754   

Notes: Caliper for the nearest neighbor matching was set at p < .001. (c) indicates the control cases and (t) indicates 
the treatment cases. 
* p < .05 
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Table E4: Balance statistics for participants matched with nearest neighbor matching (caliper = .0001) on 
educational attainment (Wave III). 

DV: Educational Attainment 
(Wave III) 

Did Not Attend One 
Year of College (c) 

Attended One Year of 
College (t) % Bias t-value 

!" !" 
Covariates (Wave I)     

Age 16.076 15.986 -5.390 -.786 
Non-White  .306 .282 -5.352 -.830 
Male .539 .535 -.799 -.126 
Parent Income 48.302 49.302 1.603 .331 
Parent Employment Status .606 .573 -6.982 -1.089 
Parent Education .439 .425 -2.822 -.445 
Maternal Conflict  .016 -.139 -13.102 -2.002* 
Paternal Conflict -.065 -.081 -1.248 -.196 
School Attachment .107 .101 -.624 -.097 
Social Support  8.058 8.175 11.123 1.700 
Peer Drug Use .783 .759 -2.928 -.442 
Baseline Delinquency .521 .510 -1.951 -.293 
Baseline Drug Use .490 .487 -.753 -.119 

N 503 503   

Notes: Caliper for the nearest neighbor matching was set at p < .0001. (c) indicates the control cases and (t) indicates 
the treatment cases. 
* p < .05 
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Table E5: Descriptive statistics for the matched sample (caliper = .05).  

Post-matching Sample Pre-matching Sample t-value !" !" 
Dependent Variables (Wave IV) 

   

Delinquency  .071 .065 1.330 
Drug Use  .051 .029 .850 

Treatment Conditions (Wave III) 
   

Educational Attainment  .500 .620 -12.385* 
Covariates (Wave I) 

   

Age 15.903 15.918 -.439 
Non-White  .298 .266 3.631* 
Male .509 .467 4.255* 
Parent Income 45.841 55.084 -10.507* 
Parent Employment Status .604 .611 -.708 
Parent Education .372 .480 -11.290* 
Maternal Conflict  -.063 -.069 .256 
Paternal Conflict -.033 -.056 .865 
School Attachment .051 .093 -2.060* 
Social Support  8.079 8.089 -.462 
Peer Drug Use .803 .759 2.600* 
Baseline Delinquency .530 .521 .659 
Baseline Drug Use .508 .490 2.046 

N 4,500 6,202 
 

Notes: Caliper for the nearest neighbor matching was set at p < .05. Unmatched sample designates the cases 
remaining after listwise deletion for the model. The sample size for delinquency (Wave IV) was 3,896 and the 
sample size for Drug use (Wave IV) was 3,885 on the matched sample. 
* p < .05 
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Table E6: Descriptive statistics for the matched sample (caliper = .01). 

  Post-matching Sample Pre-matching Sample t-value !" !" 
Dependent Variables (Wave IV) 

   

Delinquency  .070 .065 .929 
Drug Use  .052 .029 .897 

Treatment Conditions (Wave III) 
   

Educational Attainment  .500 .620 -12.337* 
Covariates (Wave I) 

   

Age 15.910 15.918 -.236 
Non-White  .294 .266 3.100* 
Male .512 .467 4.572* 
Parent Income 46.144 55.084 -9.958* 
Parent Employment Status .611 .611 .046 
Parent Education .372 .480 -11.211* 
Maternal Conflict  -.060 -.069 .361 
Paternal Conflict -.035 -.056 .772 
School Attachment .054 .093 -1.923 
Social Support  8.075 8.089 -.616 
Peer Drug Use .800 .759 2.405* 
Baseline Delinquency .529 .521 .598 
Baseline Drug Use .510 .490 2.217* 

N 4,442 6,202   
Notes: Caliper for the nearest neighbor matching was set at p < .01. Unmatched sample designates the cases 
remaining after listwise deletion for the model. The sample size for delinquency (Wave IV) was 3,840 and the 
sample size for Drug use (Wave IV) was 3,826 on the matched sample.  
* p < .05 
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Table E7: Descriptive statistics for the matched sample (caliper = .001). 

  Post-matching Sample Pre-matching Sample t-value !" !" 
Dependent Variables (Wave IV) 

   

Delinquency  .066 .065 .091 
Drug Use  .034 .029 .176 

Treatment Conditions (Wave III) 
   

Educational Attainment  .500 .620 -11.460* 
Covariates (Wave I) 

   

Age 15.932 15.918 .382 
Non-White  .287 .266 2.212* 
Male .505 .467 3.533* 
Parent Income 46.914 55.084 -8.900* 
Parent Employment Status .607 .611 -.320 
Parent Education .408 .480 -6.944* 
Maternal Conflict  -.082 -.069 -.513 
Paternal Conflict -.045 -.056 .393 
School Attachment .081 .093 -.529 
Social Support  8.087 8.089 -.071 
Peer Drug Use .782 .759 1.266 
Baseline Delinquency .515 .521 -.504 
Baseline Drug Use .501 .490 1.136 

N 3,508 6,202   
Notes: Caliper for the nearest neighbor matching was set at p < .001. Unmatched sample designates the cases 
remaining after listwise deletion for the model. The sample size for delinquency (Wave IV) was 3,034 and the 
sample size for Drug use (Wave IV) was 3,026 on the matched sample.  
* p < .05 
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Table E8: Descriptive statistics for the matched sample (caliper = .0001). 
  Post-matching Sample Pre-matching Sample t-value !" !" 

Dependent Variables (Wave IV) 
   

Delinquency  .073 .065 .880 
Drug Use  .007 .029 -.480 

Treatment Conditions (Wave III) 
   

Educational Attainment  .500 .620 -7.075* 
Covariates (Wave I) 

   

Age 16.031 15.918 1.854 
Non-White  .294 .266 1.806 
Male .537 .467 4.100* 
Parent Income 48.802 55.084 -3.766* 
Parent Employment Status .589 .611 -1.275 
Parent Education .432 .480 -2.832* 
Maternal Conflict  -.061 -.069 .178 
Paternal Conflict -.073 -.056 -.377 
School Attachment .104 .093 .344 
Social Support  8.117 8.089 .746 
Peer Drug Use .771 .759 .393 
Baseline Delinquency .515 .521 -.285 
Baseline Drug Use .489 .490 -.088 

N 1,006 6,202   
Notes: Caliper for the nearest neighbor matching was set at p < .0001. Unmatched sample designates the cases 
remaining after listwise deletion for the model.  The sample size for delinquency (Wave IV) was 873 and the 
sample size for Drug use (Wave IV) was 871 on the matched sample.  
* p < .05 
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Table E9: Predicting delinquency (Wave IV) and drug use (Wave IV) with educational attainment (Wave III) after nearest neighbor matching with 
a caliper at .05. 

  DV: Delinquency (Wave IV) DV: Drug Use (Wave IV) 
b SE β 95%CI b SE β 95%CI 

Treatment Conditions (Wave III)         
Educational Attainment  -.009 .007 -.020 -.024,.005 -.094* .040 -.038 -.173,-.016 

R2 .001 .001* 
N 3,896 3,885 

Notes:  Caliper for the nearest neighbor matching was set at p ≤	.05. 
*p < .05 
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Table E10: Predicting delinquency (Wave IV) and drug use (Wave IV) with educational attainment (Wave III) after nearest neighbor matching 
with a caliper at .01. 

  DV: Delinquency (Wave IV) DV: Drug Use (Wave IV) 
b SE β 95%CI b SE β 95%CI 

Treatment Conditions (Wave III)         
Educational Attainment  -.005 .008 -.011 -.020,.010 -.074 .041 -.029 -.153,.006 

R2 -.001 .001 
N 3,840 3,826 

Notes:  Caliper for the nearest neighbor matching was set at p ≤ .01. 
*p < .05 
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Table E11: Predicting delinquency (Wave IV) and drug use (Wave IV) with educational attainment (Wave III) after nearest neighbor matching 
with a caliper at .001. 

  DV: Delinquency (Wave IV) DV: Drug Use (Wave IV) 
b SE β 95%CI b SE β 95%CI 

Treatment Conditions (Wave III)         
Educational Attainment  -.005 .008 -.012 -.021,.011 -.054 .046 -.022 -.144,.035 

R2 -.001 .001 
N 3,034 3,026 

Notes:  Caliper for the nearest neighbor matching was set at p ≤ .001. 
*p < .05 
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Table E12: Predicting delinquency (Wave IV) and drug use (Wave IV) with educational attainment (Wave III) after nearest neighbor matching 
with a caliper at .0001. 

  DV: Delinquency (Wave IV) DV: Drug Use (Wave IV) 
b SE β 95%CI b SE β 95%CI 

Treatment Conditions (Wave III)         
Educational Attainment  -.026 .017 -.051 -.060,.008 -.048 .087 -.019 -.218,.122 

R2 .001 -.001 
N 873 871 

Notes:  Caliper for the nearest neighbor matching was set at p ≤ .0001. 
*p < .05 
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Appendix F: Complete Results of the Simulation Analysis 
 
 

 
Table F1. Simulated comparison of the point estimates achieved from post-matching bivariate regressions to the bivariate and true point estimates (all measures 
observed; variance predicted by c and e equal). 

Variance predicted  
(s2) in t (a,c,e) 

True  
(y ~ t) Bivariate 

(y ~ t) 

Post  
Matching 

 (e) 

Post  
Matching 

(c) 

Post  
Matching 

(a) 

Post  
Matching 

(e + c) 

Post  
Matching 

(e + a) 

Post  
Matching 

(c + a) 

Post  
Matching  
(e + c + a) 

b b b b b b b b b 
a(.05), c(.45), e(.45) 1.00 1.36 1.27 1.29 1.35 1.15 1.21 1.23 1.01 
a(.10), c(.43), e(.43) 1.00 1.38 1.29 1.31 1.35 1.21 1.21 1.24 1.01 
a(.15), c(.40), e(.40) 1.00 1.39 1.31 1.33 1.35 1.23 1.23 1.25 1.01 
a(.20), c(.38), e(.38) 1.00 1.40 1.32 1.34 1.35 1.24 1.23 1.26 1.01 
a(.25), c(.35), e(.35) 1.00 1.41 1.33 1.35 1.35 1.24 1.24 1.27 1.01 
a(.30), c(.33), e(.33) 1.00 1.41 1.34 1.35 1.35 1.24 1.25 1.27 1.01 
a(.32), c(.32), e(.32) 1.00 1.41 1.34 1.35 1.36 1.24 1.25 1.27 1.01 
a(.35), c(.30), e(.30) 1.00 1.41 1.34 1.35 1.36 1.24 1.25 1.27 1.01 
a(.40), c(.28), e(.28) 1.00 1.41 1.33 1.35 1.36 1.24 1.23 1.26 1.01 
a(.45), c(.25), e(.25) 1.00 1.40 1.32 1.34 1.36 1.24 1.21 1.24 1.01 
a(.50), c(.23), e(.23) 1.00 1.38 1.31 1.33 1.36 1.24 1.18 1.22 1.01 
a(.55), c(.20), e(.20) 1.00 1.37 1.30 1.32 1.36 1.24 1.15 1.19 1.01 
a(.60), c(.18), e(.18) 1.00 1.35 1.29 1.3 1.36 1.24 1.13 1.15 1.01 
a(.65), c(.15), e(.15) 1.00 1.33 1.28 1.29 1.36 1.24 1.10 1.12 1.01 

Notes: All simulated data is based on 50,000 cases; The formula predicting the treatment variable (t) was specified as such t = 0 + (s2*a) + (s2*c) + (s2*e) + 
(.05*#); The formula predicting the dependent variable (y) was specified as such y = 0 + (1.00*t) + (1.25*a) + (1.25*c) + (1.25*e) + (.005*#). Four predictor 
variables were created for e and four predictor variables were created four c. e was specified as such e = 25*x1 +25*x2 +25*x3 + 25*x4, and c was specified as 
such c = 25*x1 +25*x2 +25*x3 + 25*x4. All of the 95%CI ranged between -.01 and +.01 of the point estimate. Starting N = 50,000 cases. N size varies 
minimally between each point estimate. 
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Table F2. Simulated comparison of the point estimates achieved from post-matching bivariate regressions to true point estimates (varying observed measures e; 
variance predicted by c and e equal). 

Variance predicted  
(s2) in t (a,c,e) 

True  
(y ~ t) 

Post  
Matching 
(e(1) + a) 

Post  
Matching  

(e(1) + c(4) + a) 

Post  
Matching 
(e(2) + a) 

Post  
Matching  

(e(2) + c(4) + a) 

Post  
Matching 
(e(3) + a) 

Post  
Matching 

(e(3) + c(4) + a) 
b b b b b b b 

a(.05), c(.45), e(.45) 1.00 1.33 1.22✢ 1.31 1.18✢⏇ 1.29 1.13✢⏇⏚ 
a(.10), c(.43), e(.43) 1.00 1.33 1.22✢ 1.31 1.18✢⏇⏚ 1.29 1.13✢⏇⏚ 
a(.15), c(.40), e(.40) 1.00 1.33 1.22✢⏇⏚ 1.31 1.18✢⏇⏚ 1.29 1.13✢⏇⏚ 
a(.20), c(.38), e(.38) 1.00 1.34 1.22✢⏇⏚ 1.32 1.18✢⏇⏚ 1.29 1.13✢⏇⏚ 
a(.25), c(.35), e(.35) 1.00 1.34 1.22✢⏇⏚ 1.32 1.18✢⏇⏚ 1.29 1.13✢⏇⏚ 
a(.30), c(.33), e(.33) 1.00 1.34 1.22✢⏇⏚ 1.32 1.18✢⏇⏚ 1.29 1.13✢⏇⏚ 
a(.32), c(.32), e(.32) 1.00 1.34 1.22✢⏇⏚ 1.32 1.18✢⏇⏚ 1.29 1.14✢⏇⏚ 
a(.35), c(.30), e(.30) 1.00 1.34 1.22✢⏇⏚ 1.32 1.18✢⏇⏚ 1.29 1.13✢⏇⏚ 
a(.40), c(.28), e(.28) 1.00 1.34 1.22✢⏇⏚ 1.32 1.18✢⏇⏚ 1.30 1.13✢⏇⏚ 
a(.45), c(.25), e(.25) 1.00 1.34 1.22✢⏚ 1.32 1.18✢⏇⏚ 1.30 1.13✢⏇⏚ 
a(.50), c(.23), e(.23) 1.00 1.34 1.22✢⏚ 1.32 1.18✢⏇⏚ 1.30 1.12✢⏇⏚ 
a(.55), c(.20), e(.20) 1.00 1.35 1.22⏚ 1.32 1.18✢⏚ 1.29 1.13✢⏇⏚ 
a(.60), c(.18), e(.18) 1.00 1.35 1.22⏚ 1.32 1.18⏚ 1.30 1.12✢⏇⏚ 
a(.65), c(.15), e(.15) 1.00 1.35 1.22⏚ 1.32 1.18⏚ 1.29 1.12✢⏚ 

Notes: All simulated data is based on 50,000 cases; The formula predicting the treatment variable (t) was specified as such t = 0 + (s2*a) + (s2*c) + (s2*e) + 
(.05*#); The formula predicting the dependent variable (y) was specified as such y = 0 + (1.00*t) + (1.25*a) + (1.25*c) + (1.25*e) + (.005*#). Four predictor 
variables were created for e and four predictor variables were created four c. e was specified as such e = 25*x1 +25*x2 +25*x3 + 25*x4, and c was specified as 
such c = 25*x1 +25*x2 +25*x3 + 25*x4. The number in the bracket represents the number of observed variables included in the PSM model. All of the 95%CI 
ranged between -.01 and +.01 of the point estimate. Starting N = 50,000 cases. N size varies minimally between each point estimate. 
✢ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (c + a; Table F1). 
⏇ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + a; Table F1). 
⏚ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + c; Table F1). 
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Table F3. Simulated comparison of the point estimates achieved from post-matching bivariate regressions to true point estimates (varying observed measures c; 
variance predicted by c and e equal). 

Variance predicted   
(s2) in t (a,c,e) 

True  
(y ~ t) 

Post  
Matching 
(c(1) + a) 

Post  
Matching  

(e(4) + c(1) + a) 

Post  
Matching 
(c(2) + a) 

Post  
Matching  

(e(4) + c(2) + a) 

Post  
Matching 
(c(3) + a) 

Post  
Matching 

(e(4) + c(3) + a) 
b b b b b b b 

a(.05), c(.45), e(.45) 1.00 1.32 1.22✢ 1.30 1.18✢⏇⏚ 1.28 1.13✢⏇⏚ 
a(.10), c(.43), e(.43) 1.00 1.32 1.22✢ 1.30 1.19✢⏇⏚ 1.28 1.14✢⏇⏚ 
a(.15), c(.40), e(.40) 1.00 1.33 1.22✢⏇⏚ 1.31 1.18✢⏇⏚ 1.28 1.13✢⏇⏚ 
a(.20), c(.38), e(.38) 1.00 1.32 1.22✢⏇⏚ 1.31 1.18✢⏇⏚ 1.28 1.13✢⏇⏚ 
a(.25), c(.35), e(.35) 1.00 1.33 1.22✢⏇⏚ 1.31 1.18✢⏇⏚ 1.28 1.13✢⏇⏚ 
a(.30), c(.33), e(.33) 1.00 1.33 1.22✢⏇⏚ 1.31 1.18✢⏇⏚ 1.28 1.13✢⏇⏚ 
a(.32), c(.32), e(.32) 1.00 1.33 1.22✢⏇⏚ 1.31 1.19✢⏇⏚ 1.29 1.13✢⏇⏚ 
a(.35), c(.30), e(.30) 1.00 1.33 1.22✢⏇⏚ 1.31 1.18✢⏇⏚ 1.29 1.13✢⏇⏚ 
a(.40), c(.28), e(.28) 1.00 1.33 1.22✢⏇⏚ 1.31 1.18✢⏇⏚ 1.29 1.13✢⏇⏚ 
a(.45), c(.25), e(.25) 1.00 1.34 1.22✢⏚ 1.31 1.18✢⏇⏚ 1.28 1.13✢⏇⏚ 
a(.50), c(.23), e(.23) 1.00 1.34 1.22✢⏚ 1.31 1.18✢⏚ 1.28 1.13✢⏇⏚ 
a(.55), c(.20), e(.20) 1.00 1.34 1.22⏚ 1.31 1.18✢⏚ 1.28 1.12✢⏇⏚ 
a(.60), c(.18), e(.18) 1.00 1.33 1.22⏚ 1.31 1.17⏚ 1.28 1.12✢⏇⏚ 
a(.65), c(.15), e(.15) 1.00 1.33 1.21⏚ 1.30 1.17⏚ 1.28 1.12✢⏚ 

Notes: All simulated data is based on 50,000 cases; The formula predicting the treatment variable (t) was specified as such t = 0 + (s2*a) + (s2*c) + (s2*e) + 
(.05*#); The formula predicting the dependent variable (y) was specified as such y = 0 + (1.00*t) + (1.25*a) + (1.25*c) + (1.25*e) + (.005*#). Four predictor 
variables were created for e and four predictor variables were created four c. e was specified as such e = 25*x1 +25*x2 +25*x3 + 25*x4, and c was specified as 
such c = 25*x1 +25*x2 +25*x3 + 25*x4. The number in the bracket represents the number of observed variables included in the PSM model. Starting N = 
50,000 cases. N size varies minimally between each point estimate. 
✢ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (c + a; Table F1). 
⏇ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + a; Table F1). 
⏚ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + c; Table F1). 
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Table F4. Simulated comparison of the point estimates achieved from post-matching bivariate regressions to the bivariate and true point estimates (varying observed measures e and c; 
variance predicted by c and e equal). 

Variance predicted  
(s2) in t (a,c,e) 

True  
(y ~ t) 

Post  
Matching  

(e(1) + c(1) + a) 

Post  
Matching  

(e(2) + c(2) + a) 

Post  
Matching  

(e(3) + c(3) + a) 

Post  
Matching  

(e(1) + c(2) + a) 

Post  
Matching  

(e(1) + c(3) + a) 

Post  
Matching  

(e(2) + c(3) + a) 

Post  
Matching  

(e(2) + c(1) + a) 

Post  
Matching 

(e(3) + c(1) + a) 

Post  
Matching  

(e(3) + c(2) + a) 
b b b b b b b b b b 

a(.05), c(.45), e(.45) 1.00 1.29 1.24 1.17✢⏇ 1.26 1.22✢ 1.21✢⏇ 1.27 1.25 1.22✢ 
a(.10), c(.43), e(.43) 1.00 1.29 1.24✢ 1.17✢⏇⏚ 1.26 1.23✢ 1.20✢⏇⏚ 1.27 1.25 1.22✢ 
a(.15), c(.40), e(.40) 1.00 1.29 1.24✢ 1.17✢⏇⏚ 1.26 1.23✢⏇⏚ 1.20✢⏇⏚ 1.27 1.25 1.22✢⏇⏚ 
a(.20), c(.38), e(.38) 1.00 1.29 1.24✢ 1.17✢⏇⏚ 1.26✢ 1.23✢⏇⏚ 1.20✢⏇⏚ 1.27 1.25 1.22✢⏇⏚ 
a(.25), c(.35), e(.35) 1.00 1.29 1.24✢⏇⏚ 1.17✢⏇⏚ 1.27✢ 1.23✢⏇⏚ 1.20✢⏇⏚ 1.27 1.25 1.22✢⏇⏚ 
a(.30), c(.33), e(.33) 1.00 1.30 1.24✢⏇⏚ 1.17✢⏇⏚ 1.26✢ 1.23✢⏇⏚ 1.21✢⏇⏚ 1.27 1.25 1.22✢⏇⏚ 
a(.32), c(.32), e(.32) 1.00 1.30 1.24✢⏇⏚ 1.17✢⏇⏚ 1.27✢ 1.23✢⏇⏚ 1.21✢⏇⏚ 1.28 1.25 1.22✢⏇⏚ 
a(.35), c(.30), e(.30) 1.00 1.29 1.24✢⏇⏚ 1.17✢⏇⏚ 1.27✢ 1.23✢⏇⏚ 1.21✢⏇⏚ 1.27 1.25 1.22✢⏇⏚ 
a(.40), c(.28), e(.28) 1.00 1.30 1.24✢⏚ 1.17✢⏇⏚ 1.27 1.23✢⏇⏚ 1.20✢⏇⏚ 1.27 1.25 1.21✢⏇⏚ 
a(.45), c(.25), e(.25) 1.00 1.30 1.24✢⏚ 1.17✢⏇⏚ 1.27 1.23✢⏚ 1.20✢⏇⏚ 1.28 1.25 1.21✢⏇⏚ 
a(.50), c(.23), e(.23) 1.00 1.30 1.24⏚ 1.17✢⏇⏚ 1.27 1.23⏚ 1.20✢⏚ 1.27 1.25 1.21✢⏚ 
a(.55), c(.20), e(.20) 1.00 1.30 1.24⏚ 1.17✢⏚ 1.27 1.23⏚ 1.20⏚ 1.17 1.25 1.22⏚ 
a(.60), c(.18), e(.18) 1.00 1.29 1.24⏚ 1.17⏚ 1.26 1.23⏚ 1.20⏚ 1.27 1.25 1.21⏚ 
a(.65), c(.15), e(.15) 1.00 1.29 1.24⏚ 1.16⏚ 1.26 1.23⏚ 1.20⏚ 1.27 1.25 1.20⏚ 

Notes: All simulated data is based on 50,000 cases; The formula predicting the treatment variable (t) was specified as such t = 0 + (s2*a) + (s2*c) + (s2*e) + (.05*#); The formula 
predicting the dependent variable (y) was specified as such y = 0 + (1.00*t) + (1.25*a) + (1.25*c) + (1.25*e) + (.005*#). Four predictor variables were created for e and four predictor 
variables were created four c. e was specified as such e = 25*x1 +25*x2 +25*x3 + 25*x4, and c was specified as such c = 25*x1 +25*x2 +25*x3 + 25*x4. The number in the bracket 
represents the number of observed variables included in the PSM model. All of the 95%CI ranged between -.01 and +.01 of the point estimate. Starting N = 50,000 cases. N size varies 
minimally between each point estimate. 
✢ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (c + a; Table F1). 
⏇ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + a; Table F1). 
⏚ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + c; Table F1). 
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Table F5. Simulated comparison of the point estimates achieved from post-matching bivariate regressions to the bivariate and true point estimates (all measures 
observed; variance predicted by e triple that of c). 

Variance predicted  
(s2) in t (a,c,e) 

True  
(y ~ t) 

Bivariate 
(y ~ t) 

Post  
Matching 

 (e) 

Post  
Matching 

(c) 

Post  
Matching 

(a) 

Post  
Matching 

(e + c) 

Post  
Matching 

(e + a) 

Post  
Matching 

(c + a) 

Post  
Matching  
(e + c + a) 

b b b b b b b b b 
a(.05), c(.22), e(.68) 1.00 1.33 1.28 1.28 1.32 1.05 1.11 1.26 1.01 
a(.10), c(.21), e(.64) 1.00 1.34 1.32 1.29 1.32 1.08 1.12 1.26 1.01 
a(.15), c(.20), e(.60) 1.00 1.35 1.34 1.31 1.32 1.12 1.13 1.26 1.01 
a(.20), c(.19), e(.56) 1.00 1.37 1.34 1.32 1.32 1.15 1.15 1.27 1.01 
a(.25), c(.18), e(.53) 1.00 1.38 1.34 1.33 1.32 1.17 1.17 1.26 1.01 
a(.30), c(.16), e(.49) 1.00 1.38 1.33 1.34 1.32 1.19 1.19 1.26 1.01 
a(.32), c(.32), e(.32) 1.00 1.41 1.34 1.35 1.36 1.24 1.25 1.27 1.01 
a(.35), c(.15), e(.45) 1.00 1.39 1.32 1.35 1.32 1.21 1.21 1.26 1.01 
a(.40), c(.14), e(.41) 1.00 1.39 1.30 1.35 1.32 1.22 1.23 1.25 1.01 
a(.45), c(.13), e(.38) 1.00 1.38 1.30 1.35 1.33 1.22 1.21 1.24 1.01 
a(.50), c(.11), e(.34) 1.00 1.37 1.29 1.34 1.33 1.23 1.16 1.22 1.01 
a(.55), c(.10), e(.30) 1.00 1.36 1.28 1.33 1.33 1.23 1.12 1.20 1.01 
a(.60), c(.09), e(.26) 1.00 1.35 1.27 1.32 1.33 1.23 1.09 1.17 1.01 
a(.65), c(.08), e(.23) 1.00 1.33 1.26 1.31 1.32 1.23 1.06 1.15 1.01 

Notes: All simulated data is based on 50,000 cases; The formula predicting the treatment variable (t) was specified as such t = 0 + (s2*a) + (s2*c) + (s2*e) + 
(.05*#); The formula predicting the dependent variable (y) was specified as such y = 0 + (1.00*t) + (1.25*a) + (1.25*c) + (1.25*e) + (.005*#). Four predictor 
variables were created for e and four predictor variables were created four c. e was specified as such e = 25*x1 +25*x2 +25*x3 + 25*x4, and c was specified as 
such c = 25*x1 +25*x2 +25*x3 + 25*x4. All of the 95%CI ranged between -.01 and +.01 of the point estimate. Starting N = 50,000 cases. N size varies 
minimally between each point estimate. 
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Table F6. Simulated comparison of the point estimates achieved from post-matching bivariate regressions to the bivariate and true point estimates (varying 
observed measures e; variance predicted by e triple that of c). 

Variance predicted  
(s2) in t (a,c,e) 

True  
(y ~ t) 

Post  
Matching 
(e(1) + a) 

Post  
Matching  

(e(1) + c(4) + a) 

Post  
Matching 
(e(2) + a) 

Post  
Matching  

(e(2) + c(4) + a) 

Post  
Matching 
(e(3) + a) 

Post  
Matching 

(e(3) + c(4) + a) 
b b b b b b b 

a(.05), c(.22), e(.68) 1.00 1.29 1.22✢ 1.27 1.18✢ 1.25✢ 1.13✢ 
a(.10), c(.21), e(.64) 1.00 1.29 1.22✢ 1.27 1.18✢ 1.25✢ 1.13✢ 
a(.15), c(.20), e(.60) 1.00 1.29 1.22✢ 1.27 1.18✢ 1.26✢ 1.13✢⏇ 
a(.20), c(.19), e(.56) 1.00 1.29 1.22✢ 1.27✢ 1.18✢ 1.25✢ 1.13✢⏇⏚ 
a(.25), c(.18), e(.53) 1.00 1.30 1.22✢ 1.28 1.18✢ 1.25✢ 1.13✢⏇⏚ 
a(.30), c(.16), e(.49) 1.00 1.30 1.22✢ 1.28 1.18✢⏇⏚ 1.26✢ 1.13✢⏇⏚ 
a(.32), c(.32), e(.32) 1.00 1.34 1.22✢⏇⏚ 1.32 1.18✢⏇⏚ 1.29 1.13✢⏇⏚ 
a(.35), c(.15), e(.45) 1.00 1.30 1.22✢ 1.28 1.18✢⏇⏚ 1.26✢ 1.13✢⏇⏚ 
a(.40), c(.14), e(.41) 1.00 1.30 1.22✢⏇⏚ 1.28 1.18✢⏇⏚ 1.26 1.13✢⏇⏚ 
a(.45), c(.13), e(.38) 1.00 1.30 1.22✢⏚ 1.28 1.18✢⏇⏚ 1.26 1.13✢⏇⏚ 
a(.50), c(.11), e(.34) 1.00 1.30 1.22✢⏚ 1.28 1.18✢⏚ 1.26 1.13✢⏇⏚ 
a(.55), c(.10), e(.30) 1.00 1.31 1.22⏚ 1.28 1.18✢⏚ 1.26 1.13✢⏚ 
a(.60), c(.09), e(.26) 1.00 1.30 1.23⏚ 1.28 1.19⏚ 1.25 1.13✢⏚ 
a(.65), c(.08), e(.23) 1.00 1.30 1.22⏚ 1.28 1.18⏚ 1.25 1.12✢⏚ 

Notes: All simulated data is based on 50,000 cases; The formula predicting the treatment variable (t) was specified as such t = 0 + (s2*a) + (s2*c) + (s2*e) + 
(.05*#); The formula predicting the dependent variable (y) was specified as such y = 0 + (1.00*t) + (1.25*a) + (1.25*c) + (1.25*e) + (.005*#). Four predictor 
variables were created for e and four predictor variables were created four c. e was specified as such e = 25*x1 +25*x2 +25*x3 + 25*x4, and c was specified as 
such c = 25*x1 +25*x2 +25*x3 + 25*x4. The number in the bracket represents the number of observed variables included in the PSM model. All of the 95%CI 
ranged between -.01 and +.01 of the point estimate. Starting N = 50,000 cases. N size varies minimally between each point estimate. 
✢ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (c + a; Table F5). 
⏇ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + a; Table F5). 
⏚ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + c; Table F5). 
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Table F7. Simulated comparison of the point estimates achieved from post-matching bivariate regressions to the bivariate and true point estimates (varying 
observed measures c; variance predicted by e triple that of c). 

Variance predicted   
(s2) in t (a,c,e) 

True  
(y ~ t) 

Post  
Matching 
(c(1) + a) 

Post  
Matching  

(e(4) + c(1) + a) 

Post  
Matching 
(c(2) + a) 

Post  
Matching  

(e(4) + c(2) + a) 

Post  
Matching 
(c(3) + a) 

Post  
Matching 

(e(4) + c(3) + a) 
b b b b b b b 

a(.05), c(.22), e(.68) 1.00 1.29 1.22✢ 1.28 1.18✢ 1.26✢ 1.13✢ 
a(.10), c(.21), e(.64) 1.00 1.29 1.22✢ 1.27 1.18✢ 1.26✢ 1.12✢⏇ 
a(.15), c(.20), e(.60) 1.00 1.29 1.22✢ 1.28 1.19✢ 1.26✢ 1.12✢⏇⏚ 
a(.20), c(.19), e(.56) 1.00 1.30 1.22✢ 1.28 1.18✢ 1.27✢ 1.12✢⏇⏚ 
a(.25), c(.18), e(.53) 1.00 1.30 1.22✢ 1.28 1.18✢ 1.27 1.12✢⏇⏚ 
a(.30), c(.16), e(.49) 1.00 1.30 1.22✢ 1.28 1.18✢⏇⏚ 1.27 1.13✢⏇⏚ 
a(.32), c(.32), e(.32) 1.00 1.33 1.22✢⏚ 1.31 1.19✢⏇⏚ 1.29 1.13✢⏇⏚ 
a(.35), c(.15), e(.45) 1.00 1.30 1.21✢⏇⏚ 1.28 1.17✢⏇⏚ 1.27 1.12✢⏇⏚ 
a(.40), c(.14), e(.41) 1.00 1.30 1.21✢⏚ 1.29 1.17✢⏇⏚ 1.27 1.11✢⏇⏚ 
a(.45), c(.13), e(.38) 1.00 1.30 1.21✢⏇⏚ 1.29 1.17✢⏇⏚ 1.27 1.11✢⏇⏚ 
a(.50), c(.11), e(.34) 1.00 1.30 1.21✢⏚ 1.29 1.17✢⏚ 1.27 1.11✢⏇⏚ 
a(.55), c(.10), e(.30) 1.00 1.30 1.20✢⏚ 1.29 1.16✢⏚ 1.27 1.10✢⏇⏚ 
a(.60), c(.09), e(.26) 1.00 1.31 1.20⏚ 1.29 1.15✢⏚ 1.27 1.10✢⏚ 
a(.65), c(.08), e(.23) 1.00 1.30 1.19⏚ 1.29 1.14✢⏚ 1.27 1.08✢⏚ 

Notes: All simulated data is based on 50,000 cases; The formula predicting the treatment variable (t) was specified as such t = 0 + (s2*a) + (s2*c) + (s2*e) + 
(.05*#); The formula predicting the dependent variable (y) was specified as such y = 0 + (1.00*t) + (1.25*a) + (1.25*c) + (1.25*e) + (.005*#). Four predictor 
variables were created for e and four predictor variables were created four c. e was specified as such e = 25*x1 +25*x2 +25*x3 + 25*x4, and c was specified as 
such c = 25*x1 +25*x2 +25*x3 + 25*x4. The number in the bracket represents the number of observed variables included in the PSM model. All of the 95%CI 
ranged between -.01 and +.01 of the point estimate. Starting N = 50,000 cases. N size varies minimally between each point estimate. 
✢ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (c + a; Table F5). 
⏇ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + a; Table F5). 
⏚ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + c; Table F5). 
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Table F8. Simulated comparison of the point estimates achieved from post-matching bivariate regressions to the bivariate and true point estimates (varying observed measures e and c; 
variance predicted by e triple that of c). 

Variance predicted  
(s2) in t (a,c,e) 

True  
(y ~ t) 

Post  
Matching  

(e(1) + c(1) + a) 

Post  
Matching  

(e(2) + c(2) + a) 

Post  
Matching  

(e(3) + c(3) + a) 

Post  
Matching  

(e(1) + c(2) + a) 

Post  
Matching  

(e(1) + c(3) + a) 

Post  
Matching  

(e(2) + c(3) + a) 

Post  
Matching  

(e(2) + c(1) + a) 

Post  
Matching 

(e(3) + c(1) + a) 

Post  
Matching  

(e(3) + c(2) + a) 
b b b b b b b b b b 

a(.05), c(.22), e(.68) 1.00 1.26✢ 1.21✢ 1.15✢ 1.24✢ 1.21✢ 1.19✢ 1.24✢ 1.22✢ 1.19✢ 
a(.10), c(.21), e(.64) 1.00 1.26✢ 1.21✢ 1.16✢ 1.24✢ 1.21✢ 1.19✢ 1.24✢ 1.22✢ 1.19✢ 
a(.15), c(.20), e(.60) 1.00 1.26✢ 1.21✢ 1.16✢ 1.24✢ 1.21✢ 1.19✢ 1.24✢ 1.22✢ 1.19✢ 
a(.20), c(.19), e(.56) 1.00 1.26✢ 1.22✢ 1.15✢⏇⏚ 1.24✢ 1.22✢ 1.19✢ 1.24✢ 1.22✢ 1.19✢ 
a(.25), c(.18), e(.53) 1.00 1.26✢ 1.21✢ 1.15✢⏇⏚ 1.24✢ 1.22✢ 1.19✢ 1.24✢ 1.22✢ 1.19✢ 
a(.30), c(.16), e(.49) 1.00 1.26✢ 1.22✢ 1.15✢⏇⏚ 1.24✢ 1.22✢ 1.19✢⏚ 1.24✢ 1.22✢ 1.19✢⏇⏚ 
a(.32), c(.32), e(.32) 1.00 1.30 1.24✢⏇⏚ 1.17✢⏇⏚ 1.27✢ 1.23✢⏇⏚ 1.21✢⏚ 1.28 1.25✢⏇ 1.22✢⏇⏚ 
a(.35), c(.15), e(.45) 1.00 1.26✢ 1.22✢ 1.15✢⏇⏚ 1.24✢ 1.22✢ 1.19✢⏚ 1.24✢ 1.22✢⏚ 1.19✢⏇⏚ 
a(.40), c(.14), e(.41) 1.00 1.26 1.21✢⏇⏚ 1.15✢⏇⏚ 1.24✢ 1.21✢⏇⏚ 1.19✢⏚ 1.24✢ 1.22✢⏇⏚ 1.19✢⏇⏚ 
a(.45), c(.13), e(.38) 1.00 1.26 1.22✢⏚ 1.15✢⏇⏚ 1.24✢ 1.22✢⏚ 1.19✢⏚ 1.24✢ 1.21✢⏚ 1.19✢⏇⏚ 
a(.50), c(.11), e(.34) 1.00 1.26 1.21✢⏚ 1.15✢⏇⏚ 1.24 1.21✢⏚ 1.19✢⏚ 1.24 1.21✢⏚ 1.19✢⏚ 
a(.55), c(.10), e(.30) 1.00 1.26 1.21⏚ 1.15✢⏚ 1.24 1.21⏚ 1.19✢⏚ 1.24 1.21⏚ 1.19✢⏚ 
a(.60), c(.09), e(.26) 1.00 1.26 1.21⏚ 1.14✢⏚ 1.24 1.21⏚ 1.18⏚ 1.23⏚ 1.21⏚ 1.18⏚ 
a(.65), c(.08), e(.23) 1.00 1.26 1.20⏚ 1.14✢⏚ 1.23 1.22⏚ 1.18⏚ 1.23⏚ 1.21⏚ 1.18⏚ 

Notes: All simulated data is based on 50,000 cases; The formula predicting the treatment variable (t) was specified as such t = 0 + (s2*a) + (s2*c) + (s2*e) + (.05*#); The formula 
predicting the dependent variable (y) was specified as such y = 0 + (1.00*t) + (1.25*a) + (1.25*c) + (1.25*e) + (.005*#). Four predictor variables were created for e and four predictor 
variables were created four c. e was specified as such e = 25*x1 +25*x2 +25*x3 + 25*x4, and c was specified as such c = 25*x1 +25*x2 +25*x3 + 25*x4. The number in the bracket 
represents the number of observed variables included in the PSM model. All of the 95%CI ranged between -.01 and +.01 of the point estimate. Starting N = 50,000 cases. N size varies 
minimally between each point estimate. 
✢ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (c + a; Table F5). 
⏇ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + a; Table F5). 
⏚ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + c; Table F5). 
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Table F9. Simulated comparison of the point estimates achieved from post-matching bivariate regressions to the bivariate and true point estimates (all measures 
observed; variance predicted by c triple that of e). 

Variance predicted  
(s2) in t (a,c,e) 

True  
(y ~ t) 

Bivariate 
(y ~ t) 

Post  
Matching 

 (e) 

Post  
Matching 

(c) 

Post  
Matching 

(a) 

Post  
Matching 

(e + c) 

Post  
Matching 

(e + a) 

Post  
Matching 

(c + a) 

Post  
Matching  
(e + c + a) 

b b b b b b b b b 
a(.05), c(.68), e(.22) 1.00 1.32 1.25 1.30 1.31 1.04 1.24 1.13 1.01 
a(.10), c(.64), e(.21) 1.00 1.33 1.27 1.34 1.31 1.07 1.24 1.14 1.01 
a(.15), c(.60), e(.20) 1.00 1.35 1.29 1.35 1.31 1.11 1.24 1.16 1.01 
a(.20), c(.56), e(.19) 1.00 1.36 1.30 1.36 1.31 1.14 1.24 1.17 1.01 
a(.25), c(.53), e(.18) 1.00 1.37 1.31 1.35 1.31 1.17 1.24 1.19 1.01 
a(.30), c(.49), e(.16) 1.00 1.38 1.32 1.34 1.32 1.19 1.24 1.22 1.01 
a(.32), c(.32), e(.32) 1.00 1.41 1.34 1.35 1.36 1.24 1.25 1.27 1.01 
a(.35), c(.45), e(.15) 1.00 1.38 1.33 1.33 1.32 1.21 1.23 1.24 1.01 
a(.40), c(.41), e(.14) 1.00 1.38 1.33 1.32 1.32 1.22 1.22 1.26 1.01 
a(.45), c(.38), e(.13) 1.00 1.37 1.33 1.31 1.32 1.22 1.21 1.24 1.01 
a(.50), c(.34), e(.11) 1.00 1.37 1.33 1.30 1.32 1.23 1.19 1.20 1.01 
a(.55), c(.30), e(.10) 1.00 1.35 1.32 1.28 1.32 1.23 1.17 1.15 1.01 
a(.60), c(.26), e(.09) 1.00 1.34 1.31 1.28 1.32 1.23 1.14 1.11 1.01 
a(.65), c(.23), e(.08) 1.00 1.32 1.30 1.27 1.32 1.23 1.12 1.08 1.01 

Notes: All simulated data is based on 50,000 cases; The formula predicting the treatment variable (t) was specified as such t = 0 + (s2*a) + (s2*c) + (s2*e) + (.05*#); 
The formula predicting the dependent variable (y) was specified as such y = 0 + (1.00*t) + (1.25*a) + (1.25*c) + (1.25*e) + (.005*#). Four predictor variables were 
created for e and four predictor variables were created four c. e was specified as such e = 25*x1 +25*x2 +25*x3 + 25*x4, and c was specified as such c = 25*x1 
+25*x2 +25*x3 + 25*x4. All of the 95%CI ranged between -.01 and +.01 of the point estimate. Starting N = 50,000 cases. N size varies minimally between each 
point estimate. 
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Table F10. Simulated comparison of the point estimates achieved from post-matching bivariate regressions to the bivariate and true point estimates (varying 
observed measures e; variance predicted by c triple that of e). 

Variance predicted  
(s2) in t (a,c,e) 

True  
(y ~ t) 

Post  
Matching 
(e(1) + a) 

Post  
Matching  

(e(1) + c(4) + a) 

Post  
Matching 
(e(2) + a) 

Post  
Matching  

(e(2) + c(4) + a) 

Post  
Matching 
(e(3) + a) 

Post  
Matching 

(e(3) + c(4) + a) 
b b b b b b b 

a(.05), c(.68), e(.22) 1.00 1.30 1.22⏇ 1.29 1.18⏇ 1.27 1.13✢⏇ 
a(.10), c(.64), e(.21) 1.00 1.31 1.23⏇ 1.29 1.18⏇ 1.28 1.13✢⏇ 
a(.15), c(.60), e(.20) 1.00 1.31 1.22⏇ 1.29 1.18⏇ 1.28 1.13✢⏇ 
a(.20), c(.56), e(.19) 1.00 1.31 1.22⏇ 1.29 1.18⏇ 1.28 1.12✢⏇⏚ 
a(.25), c(.53), e(.18) 1.00 1.31 1.22⏇ 1.29 1.18✢⏇ 1.28 1.12✢⏇⏚ 
a(.30), c(.49), e(.16) 1.00 1.31 1.22✢⏇ 1.29 1.18✢⏇⏚ 1.28 1.12✢⏇⏚ 
a(.32), c(.32), e(.32) 1.00 1.34 1.22✢⏇ 1.32 1.18✢⏇⏚ 1.29 1.14✢⏇⏚ 
a(.35), c(.45), e(.15) 1.00 1.31 1.22✢⏇ 1.30 1.17✢⏇⏚ 1.28 1.12✢⏇⏚ 
a(.40), c(.41), e(.14) 1.00 1.31 1.22✢⏇⏚ 1.30 1.17✢⏇⏚ 1.28 1.11✢⏇⏚ 
a(.45), c(.38), e(.13) 1.00 1.31 1.21✢⏇⏚ 1.30 1.17✢⏇⏚ 1.28 1.11✢⏇⏚ 
a(.50), c(.34), e(.11) 1.00 1.32 1.21⏚ 1.30 1.16✢⏇⏚ 1.28 1.11✢⏇⏚ 
a(.55), c(.30), e(.10) 1.00 1.32 1.2⏚ 1.30 1.16⏇⏚ 1.29 1.11✢⏇⏚ 
a(.60), c(.26), e(.09) 1.00 1.32 1.18⏚ 1.31 1.14⏇⏚ 1.29 1.08✢⏇⏚ 
a(.65), c(.23), e(.08) 1.00 1.32 1.19⏚ 1.30 1.15⏚ 1.28 1.09⏇⏚ 

Notes: All simulated data is based on 50,000 cases; The formula predicting the treatment variable (t) was specified as such t = 0 + (s2*a) + (s2*c) + (s2*e) + 
(.05*#); The formula predicting the dependent variable (y) was specified as such y = 0 + (1.00*t) + (1.25*a) + (1.25*c) + (1.25*e) + (.005*#). Four predictor 
variables were created for e and four predictor variables were created four c. e was specified as such e = 25*x1 +25*x2 +25*x3 + 25*x4, and c was specified as 
such c = 25*x1 +25*x2 +25*x3 + 25*x4. The number in the bracket represents the number of observed variables included in the PSM model. All of the 95%CI 
ranged between -.01 and +.01 of the point estimate. Starting N = 50,000 cases. N size varies minimally between each point estimate. 
✢ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (c + a; Table F9). 
⏇ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + a; Table F9). 
⏚ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + c; Table F9). 
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Table F11. Simulated comparison of the point estimates achieved from post-matching bivariate regressions to the bivariate and true point estimates (varying 
observed measures c; variance predicted by c triple that of e). 

Variance predicted   
(s2) in t (a,c,e) 

True  
(y ~ t) 

Post  
Matching 
(c(1) + a) 

Post  
Matching  

(e(4) + c(1) + a) 

Post  
Matching 
(c(2) + a) 

Post  
Matching  

(e(4) + c(2) + a) 

Post  
Matching 
(c(3) + a) 

Post  
Matching 

(e(4) + c(3) + a) 
b b b b b b b 

a(.05), c(.68), e(.22) 1.00 1.29 1.22⏇ 1.27 1.18⏇ 1.25 1.13✢⏇ 
a(.10), c(.64), e(.21) 1.00 1.29 1.22⏇ 1.27 1.18⏇ 1.25 1.13✢⏇ 
a(.15), c(.60), e(.20) 1.00 1.29 1.22⏇ 1.27 1.18⏇ 1.25 1.13✢⏇ 
a(.20), c(.56), e(.19) 1.00 1.29 1.22⏇ 1.27 1.18⏇ 1.25 1.14✢⏇⏚ 
a(.25), c(.53), e(.18) 1.00 1.29 1.22⏇ 1.27 1.18✢⏇ 1.25 1.13✢⏇⏚ 
a(.30), c(.49), e(.16) 1.00 1.29 1.22✢⏇ 1.27 1.19✢⏇⏚ 1.25 1.13✢⏇⏚ 
a(.32), c(.32), e(.32) 1.00 1.33 1.22✢⏇ 1.31 1.19✢⏇⏚ 1.29 1.13✢⏇⏚ 
a(.35), c(.45), e(.15) 1.00 1.30 1.22✢⏇ 1.27 1.18✢⏇⏚ 1.25 1.13✢⏇⏚ 
a(.40), c(.41), e(.14) 1.00 1.29 1.22✢⏇⏚ 1.27 1.19✢⏇⏚ 1.25✢ 1.13✢⏇⏚ 
a(.45), c(.38), e(.13) 1.00 1.30 1.22✢⏚ 1.27 1.19✢⏇⏚ 1.25 1.13✢⏇⏚ 
a(.50), c(.34), e(.11) 1.00 1.30 1.22⏚ 1.27 1.18✢⏇⏚ 1.25 1.13✢⏇⏚ 
a(.55), c(.30), e(.10) 1.00 1.30 1.22⏚ 1.27 1.18⏚ 1.24 1.13✢⏇⏚ 
a(.60), c(.26), e(.09) 1.00 1.30 1.22⏚ 1.26 1.18⏚ 1.24 1.12⏇⏚ 
a(.65), c(.23), e(.08) 1.00 1.29 1.22⏚ 1.27 1.18⏚ 1.24 1.13⏇⏚ 

Notes: All simulated data is based on 50,000 cases; The formula predicting the treatment variable (t) was specified as such t = 0 + (s2*a) + (s2*c) + (s2*e) + 
(.05*#); The formula predicting the dependent variable (y) was specified as such y = 0 + (1.00*t) + (1.25*a) + (1.25*c) + (1.25*e) + (.005*#). Four predictor 
variables were created for e and four predictor variables were created four c. e was specified as such e = 25*x1 +25*x2 +25*x3 + 25*x4, and c was specified as 
such c = 25*x1 +25*x2 +25*x3 + 25*x4. The number in the bracket represents the number of observed variables included in the PSM model. All of the 95%CI 
ranged between -.01 and +.01 of the point estimate. Starting N = 50,000 cases. N size varies minimally between each point estimate. 
✢ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (c + a; Table F9). 
⏇ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + a; Table F9). 
⏚ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + c; Table F9). 
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Table F12. Simulated comparison of the point estimates achieved from post-matching bivariate regressions to the bivariate and true point estimates (varying observed measures e and c; 
variance predicted by c triple that of e). 

Variance predicted  
(s2) in t (a,c,e) 

True  
(y ~ t) 

Post  
Matching  

(e(1) + c(1) + a) 

Post  
Matching  

(e(2) + c(2) + a) 

Post  
Matching  

(e(3) + c(3) + a) 

Post  
Matching  

(e(1) + c(2) + a) 

Post  
Matching  

(e(1) + c(3) + a) 

Post  
Matching  

(e(2) + c(3) + a) 

Post  
Matching  

(e(2) + c(1) + a) 

Post  
Matching 

(e(3) + c(1) + a) 

Post  
Matching  

(e(3) + c(2) + a) 
b b b b b b b b b b 

a(.05), c(.68), e(.22) 1.00 1.26 1.22⏇ 1.16⏇ 1.23⏇ 1.20⏇ 1.18⏇ 1.25 1.24⏇ 1.20⏇ 
a(.10), c(.64), e(.21) 1.00 1.26 1.22⏇ 1.16⏇ 1.24⏇ 1.20⏇ 1.18⏇ 1.25 1.24⏇ 1.20⏇ 
a(.15), c(.60), e(.20) 1.00 1.26 1.22⏇ 1.16⏇ 1.24⏇ 1.20⏇ 1.18⏇ 1.25 1.24⏇ 1.20⏇ 
a(.20), c(.56), e(.19) 1.00 1.27 1.22⏇ 1.16✢⏇ 1.24⏇ 1.20⏇ 1.18⏇ 1.25 1.24⏇ 1.20⏇ 
a(.25), c(.53), e(.18) 1.00 1.27 1.22⏇ 1.16✢⏇⏚ 1.24⏇ 1.20⏇ 1.18✢⏇ 1.25 1.24⏇ 1.20⏇ 
a(.30), c(.49), e(.16) 1.00 1.27 1.22✢⏇ 1.16✢⏇⏚ 1.24⏇ 1.20✢⏇ 1.18✢⏇⏚ 1.25 1.24⏇ 1.20✢⏇ 
a(.32), c(.32), e(.32) 1.00 1.30 1.24✢⏇⏚ 1.17✢⏇⏚ 1.27✢ 1.23✢⏇⏚ 1.21✢⏇⏚ 1.28 1.25✢ 1.22✢⏇⏚ 
a(.35), c(.45), e(.15) 1.00 1.27 1.22✢⏇⏚ 1.16✢⏇⏚ 1.24✢ 1.20✢⏇⏚ 1.18✢⏇⏚ 1.25 1.24✢ 1.20✢⏇⏚ 
a(.40), c(.41), e(.14) 1.00 1.27 1.22✢⏇⏚ 1.16✢⏇⏚ 1.24✢ 1.20✢⏇⏚ 1.18✢⏇⏚ 1.26✢ 1.24✢ 1.20✢⏇⏚ 
a(.45), c(.38), e(.13) 1.00 1.27 1.22✢⏚ 1.16✢⏇⏚ 1.24✢ 1.20✢⏇⏚ 1.18✢⏇⏚ 1.26 1.24✢ 1.21✢⏇⏚ 
a(.50), c(.34), e(.11) 1.00 1.27 1.22⏚ 1.16✢⏇⏚ 1.24 1.20✢⏚ 1.18✢⏇⏚ 1.26 1.24 1.20✢⏚ 
a(.55), c(.30), e(.10) 1.00 1.27 1.22⏚ 1.16⏇⏚ 1.24 1.20⏚ 1.18⏚ 1.26 1.25 1.20⏚ 
a(.60), c(.26), e(.09) 1.00 1.27 1.22⏚ 1.15⏚ 1.23⏚ 1.19⏚ 1.17⏚ 1.25 1.24 1.20⏚ 
a(.65), c(.23), e(.08) 1.00 1.27 1.22⏚ 1.15⏚ 1.23⏚ 1.19⏚ 1.17⏚ 1.25 1.24 1.20⏚ 

Notes: All simulated data is based on 50,000 cases; The formula predicting the treatment variable (t) was specified as such t = 0 + (s2*a) + (s2*c) + (s2*e) + (.05*#); The formula 
predicting the dependent variable (y) was specified as such y = 0 + (1.00*t) + (1.25*a) + (1.25*c) + (1.25*e) + (.005*#). Four predictor variables were created for e and four predictor 
variables were created four c. e was specified as such e = 25*x1 +25*x2 +25*x3 + 25*x4, and c was specified as such c = 25*x1 +25*x2 +25*x3 + 25*x4. The number in the bracket 
represents the number of observed variables included in the PSM model. All of the 95%CI ranged between -.01 and +.01 of the point estimate. Starting N = 50,000 cases. N size varies 
minimally between each point estimate. 
✢ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (c + a; Table F9). 
⏇ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + a; Table F9). 
⏚ point estimate equal to, or closer to the true point estimate than point estimate derived from matching with (e + c; Table F9). 
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Appendix G: Interpretation of GPS Balancing Results 
 

To emphasize the consistent percent reduction in bias across the majority of the 

comparisons, the current discussion will focus on the few comparisons in which the bias 

increased when moving from the pre-matching sample to the post-matching sample.  In reference 

to the 10th percentile (intelligence = 7 – 79) the pre-matching sample achieved a smaller mean 

difference on paternal conflict than the post-matching sample (pre-matching: !"∆ = -.029, t-value 

= -.608; post-matching: !"∆ = -.049, t-value = -1.826), resulting in approximately a 71 percent 

increase in bias. For the 30th percentile (intelligence = 88 – 91) the pre-matching sample 

achieved a smaller mean difference on male (pre-matching: !"∆ = .002, t-value = .182; post-

matching: !"∆ = .003, t-value = .460) and paternal conflict (pre-matching: !"∆ = -.027, t-value = -

.576; post-matching: !"∆ = -.033, t-value = -1.677) than the post-matching sample, ), resulting in 

approximately a 23 percent increase in bias for both variables.  

 Concerning the 40th percentile (intelligence = 92 – 96) the pre-matching sample achieved 

a smaller mean difference on age (pre-matching: !"∆ = .035, t-value = .601; post-matching: !"∆ = 

.059, t-value = 2.150), paternal conflict (pre-matching: !"∆ = .006, t-value = .127; post-matching: 

!"∆ = -.020, t-value = -.918), and social support (pre-matching: !"∆ = .011, t-value = .284; post-

matching: !"∆ = -.012, t-value = -.678) than the post-matching sample. The evidence suggests 

that there was approximately a 70 percent increase in bias for age, a 209 percent increase in bias 

for paternal conflict, and a 10 percent increase in bias for social support. For the 50th percentile 

(intelligence = 97 – 103) the pre-matching sample achieved a smaller mean difference on 

maternal conflict (pre-matching: !"∆ = .001, t-value = .041; post-matching: !"∆ = .007, t-value = 

.451) and school attachment (pre-matching: !"∆ = -.009, t-value = -.321; post-matching: !"∆ = -

.010, t-value = -.813) than the post-matching sample, resulting in approximately a 427 and a 17 

percent increase in bias, respectively. 
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 In reference to the 60th percentile (intelligence = 104 – 106) the pre-matching sample 

achieved a smaller mean difference on social support (pre-matching: !"∆ = .006, t-value = .188; 

post-matching: !"∆ = -.008, t-value = -.554) than the post-matching sample, resulting in 

approximately a 24 percent increase in bias. Concerning the 80th percentile (intelligence = 109 – 

111) the pre-matching sample achieved a smaller mean difference on social support (pre-

matching: !"∆ = -.006, t-value = -.164; post-matching: !"∆ = -.011, t-value = -.618), peer drug use 

(pre-matching: !"∆ = .007, t-value = .219; post-matching: !"∆ = .008, t-value = .570), and 

baseline delinquency (pre-matching: !"∆ = .004, t-value = .192; post-matching: !"∆ = .011, t-

value = 1.051) than the post-matching sample. The evidence suggests that there was 

approximately a 70 percent increase in bias for social support, a 16 percent increase in bias for 

peer drug use, and a 153 percent increase in bias for baseline delinquency. 

 For the 90th percentile (intelligence = 112 – 116) the pre-matching sample achieved a 

smaller mean difference on maternal conflict (pre-matching: !"∆ = .002, t-value = .053; post-

matching: !"∆ = -.014, t-value = .923), social support (pre-matching: !"∆ = .007, t-value = .248; 

post-matching: !"∆ = .014, t-value = 1.007), and baseline drug use (pre-matching: !"∆ = -.001, t-

value = -.073; post-matching: !"∆ = .010, t-value = 1.739) than the post-matching sample, 

resulting in approximately a 690, a 94, and a 977 percent increase in the bias respectively. 

Concerning the 100th percentile (intelligence = 117 – 122) the pre-matching sample achieved a 

smaller mean difference on paternal conflict (pre-matching: !"∆ = .001, t-value = .031; post-

matching: !"∆ = -.004, t-value = -.216), resulting in approximately a 200 percent increase in the 

bias. 

 


